Skip to main content

The Idaho Accelerator Center (IAC)

The Idaho Accelerator Center at sunset, the front is lit up with clouds in the background


The Idaho Accelerator Center (IAC) is a research facility operated by Idaho State University located in southeast Idaho. It provides opportunities for scientists and engineers from the University, the private sector, and national laboratories to utilize electron accelerators. It serves as a principal investigating conduit for nuclear physics applications research and development in materials science, biology, homeland, and national security. Student's from the Physics department are involved in all aspects of the center, from operating electron accelerators to performing experiments in nuclear physics applications. For more information visit the IAC website.

IAC projects

People in lab coats working on some equipment



Detector Construction

The Idaho Accelerator Center and ISU's Department of Physics constructed detector for the Department of Energy's Jefferson Lab facility in Newport New, Virginia. The detectors are wire chambers containing approximately 5,000, 30 micron diameter wires that are used to form gaseous cells which can detect the passage of ionizing particles. The 2 year long project will construct detectors that are about 6 feet high and will eventually be installed at Jefferson Lab in Newport News, Va. The detectors will be part of a larger detector that will be used by a group of more than 100 physicists to perform fundamental nuclear physics measurements.

A graph showing Nucleon's Fractional Down Quark Polarization


Nucleon's Fractional Down Quark Polarization

The contributions of a nucleon's constituents, quarks and gluons, to the spin of the nucleon has been a long standing question since the 1980s when it was first observed that quarks contribute less than 40%. The spin physics program at ISU is working to measure the contribution of a nucleon's down quarks to its spin. This is referred to as the down quark fractional polarization. Measurements of this quantity when compared with the standard theoretical description of quark interactions, Quantum Chromodynamics, have yet to indicate a transition from the observed negative values to the predicted positive value of unity. One goal of ISU's spin physics program is to determine the veracity of the theoretical prediction through a series of measurements with the expected precision 

A 16th century coin next to a graph showing the photon activation analysis


Photon Activation Analysis

Photon Activation Analysis is a "non-destructive" process of quantifying nuclear isotope concentrations by exciting a tiny fraction of the nuclei in a material of interest interest using photons in the MeV range. The photons used to irradiate these materials of interest are produced when electrons accelerated by the Idaho Accelerator Center's Linacs are impinged upon a radiator target, typically Tungsten, and undergo a bremsstrahlung interaction. Stable nuclei can become unstable if a photon "knocks out" either a proton or neutron. This unstable nucleus can emitt radiation in the form photons as part of its decay process. A fingerprint unique to the specific nuclear isotope is constructed based on the energy of the observed photon and the half life of the isotope. Below is an example where these isotope signatures are used to determine the provenance of Gold coins.


921 South 8th Avenue
Pocatello, Idaho, 83209
(208) 282-4636

Discover opportunity at Idaho State University