FINDING AREA, PERIMETER, AND CIRCUMFERENCE

Area, perimeter, and circumference are all measures of two-dimensional shapes. These are things you can think of as flat: a football field, a piece of paper, or a pizza. You're probably not interested in how high they are, but you might want to know their:

- Perimeter or Circumference. This is the total length of a shape's outline. If you built a fence around its edge, how long would that fence be? If you walked around the edges of this area, how far would you have gone? The length of a straight-sided shape's outline is called its perimeter, and the length of a circle's outline is called its circumference.
- Area. This is the total amount of space inside a shape's outline. If you wanted to paint a wall or irrigate a circular field, how much space would you have to cover?

Triangles

1. The perimeter of any triangle is the sum of its sides: $a+b+c$
perimeter $=\mathbf{a}+\mathbf{b}+\mathbf{c}$

$$
\begin{aligned}
& P=a+b+c \\
& P=3+5+4 \\
& P=12
\end{aligned}
$$

2. The area of any triangle is half its base times its height.
```
area = 1/2 bh
```


$$
\begin{aligned}
& A=1 / 2 b h \\
& A=1 / 2 * 3 * 4 \\
& A=1 / 2 * 12 \\
& A=6
\end{aligned}
$$

It doesn't matter which of the triangle's short legs is the "base" and which is the "height": you get the same solution either way.

$$
\begin{aligned}
& A=1 / 2 b h \\
& A=1 / 2 * 4 * 3 \\
& A=2 * 3 \\
& A=6
\end{aligned}
$$

Squares

1. A square is a kind of rectangle, and the perimeter of any rectangle is the sum of its four sides. Since all sides of a square are the same,

perimeter $=4 s$

s

$$
\begin{aligned}
& P=4 s \\
& P=4 * 3 \\
& P=12
\end{aligned}
$$

2. The area of a square is equal to any one of its sides times any other: s * s. Since that's the same as s squared,
```
area = s
```


s

3

$$
\begin{aligned}
& A=s^{2} \\
& A=3^{2} \\
& A=3^{*} 3 \\
& A=9
\end{aligned}
$$

Rectangles

1. The perimeter of a rectangle is the sum of its four sides. Since a rectangle has two equal short sides (width, w) and two equal long sides (length, I),
perimeter $=2 /+2 w$

$$
\begin{aligned}
& P=2 l+2 w \\
& P=(2 * 7)+(2 * 3) \\
& P=14+6 \\
& P=20
\end{aligned}
$$

2. The area of a rectangle is equal to its length times its width.
```
area = | * w
```


$$
\begin{aligned}
& A=I^{*} W \\
& A=3^{*} 7 \\
& A=21
\end{aligned}
$$

Parallelograms

Like squares and rectangles, parallelograms are quadrilaterals: they have four sides and four interior angles. In a parallelogram those angles are not right angles, but the opposite sides must still be parallel to each other.

1. The perimeter of a parallelogram is the sum of its four sides. Since a parallelogram has two equal short sides (width, w) and two equal long sides (length, I),
perimeter $=2 /+2 w$

$$
\begin{aligned}
& P=21+2 w \\
& P=(2 * 5)+(2 * 4) \\
& P=10+8 \\
& P=18
\end{aligned}
$$

2. The area of a parallelogram is equal to its base (another name for length) times its height. Its height is not the same as its width: height is measured by a vertical line perpendicular (at right angles to) the base.
```
area = b * h
```


$$
\begin{aligned}
& A=b * h \\
& A=3 * 5 \\
& A=15
\end{aligned}
$$

Trapezoids

A trapezoid is also a quadrilateral: it has four sides, but only two are parallel.

1. The perimeter of a trapezoid is the sum of its four sides.

$$
\text { perimeter }=a+b+c+d
$$

$P=a+b+c+d$
$P=2+3+4+5$
$P=14$
2. To find the area of a trapezoid, we use its two bases and its height:
area $=1 / 2\left(b_{1}+b_{2}\right)(h)$

$A=1 / 2\left(b_{1}+b_{2}\right)$ * (h)
$A=1 / 2(2+5) * 3$
$A=1 / 2 * 7^{*} 3$
$A=1 / 2$ * 21
$A=10.5$

Circles

To find a circle's circumference or area, you first need to know either its radius: $\quad r$, the distance from its center to any point on its outer edge, or its diameter: d, the length of a straight line through the circle's center that touches any two points on the outer edge.

A circle's radius is always exactly half its diameter.

1. The circumference of any circle equals two times its radius multiplied by pi (π, approximately 3.14). We can also say it equals pi times its diameter.
circumference $=2 \pi r \quad$ OR $\quad \pi d$

$$
\begin{aligned}
& C=2 \pi^{*} 3 \\
& C=6 * \pi \\
& C=18.84
\end{aligned}
$$

Because 3.14 is only an approximate value for pi, we replace the "equals" sign (=) with the "approximately equals" sign (\approx). For accuracy, some teachers prefer to use the symbol: the circumference of this circle is 6π.
2. To find the area of a circle, square its radius and multiply the result by pi.
area $=\pi r^{2}$

$$
\begin{aligned}
& A=\pi r^{2} \\
& A=3^{2} * \pi \\
& A=\left(3^{*} 3\right)^{*} \pi \\
& A=9^{*} \pi \\
& A=9 \pi \text { or } \approx 28.26
\end{aligned}
$$

