Procedure Title: Radiological Surveys
Procedure Number: RS-03 Rev.2
Effective Date: 05/31/2024

Approved By: Radiation Safety Committee Date: 04/25/2024
Revision History

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Author Name</th>
<th>Date</th>
<th>Approved by/date</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 3.0</td>
<td>Mason Jaussi & John Longley</td>
<td>09/16/20</td>
<td>RSO-09/16/20</td>
</tr>
<tr>
<td>RS 3.1</td>
<td>Brandon Jenkins</td>
<td>09/26/22</td>
<td>RSC-10/06/22</td>
</tr>
<tr>
<td>RS 3.2</td>
<td>Miranda Kriner</td>
<td>01/24/24</td>
<td>RSC-04/25/24</td>
</tr>
</tbody>
</table>
Table of Contents

1. INTRODUCTION .. 4
2. PURPOSE ... 4
3. SCOPE .. 4
4. ROLES AND RESPONSIBILITIES .. 5
5. ACRONYMS/DEFINITIONS .. 5
6. REQUIRED MATERIAL(S) .. 6
7. REQUIRED TRAINING(S) .. 6
8. PROCEDURE .. 7
 8.1. Confirmatory Surveys .. 7
 8.2. User Surveys .. 9
 8.3. Immediate Work Area Post-Job Surveys ... 9
 8.4. Formal Map User Surveys ... 10
 8.5. Release Surveys ... 12
 8.6. Transportation Surveys .. 14
 8.7. Trash Survey .. 16
 8.8. Waste Survey ... 17
 8.9. Ten Percent Survey of SCA Plates .. 18
9. LIST OF FORMS .. 19
10. REFERENCES ... 19
11. CHANGE HISTORY ... 19
12. APPENDICES .. 20

APPENDIX A – Frisking Directions ... 21
APPENDIX B – Example Surveys and Results.. 22
1. INTRODUCTION

This procedure is designed after the requirements established in the ISU Radiation Safety Manual (RSM), Sections 11 and 12. While handling radioactive material, spills may occur, containers may leak, and physical contact with radionuclides may lead to the spread of radioactive material in unintended locations. Surveys for radioactive contamination help ensure that exposure to radioactive material remains ALARA. Dose rate surveys provide information about the radiation fields and associated dose rates in the work area. Conditions are subject to change and because of this, both contamination and radiation surveys are performed periodically. Surveys help reduce the spread of contamination and characterize exposure rates. When contamination is detected, it must be removed promptly to prevent its spread and the possible exposure of other individuals. The survey frequency is based on the source classification for a particular radiation use area, as shown in the RSM Section 12 – Table 8 and is specified in the Authorized User permit.

In addition to laboratory surveys, this procedure provides instructions for release surveys to demonstrate equipment and material may be released as non-radioactive and surveys for shipping containers to comply with transportation regulations.

2. PURPOSE

The purpose of this procedure is to provide clear instructions for performing and documenting the various radiological surveys conducted within the ISU Radiation Safety Program.

3. SCOPE

This procedure specifies instructions for radiological surveys performed in the ISU Radiation Safety Program as listed below:

- Confirmatory Surveys are performed by the Radiation Safety Department.
- User Survey of laboratory spaces.
- Release Surveys demonstrate equipment and material that have been used with dispersible radioactive materials or are potentially activated can be released as non-radioactive for repair or unrestricted use. Transportation Surveys for radioactive material packages prior to shipping.
- Trash Surveys are typically performed on laboratory trash in restricted areas to verify no radioactive material is present.
- Waste Surveys are performed on waste containers prior to being shipped.
- SCA Leak Test Surveys.
4. ROLES AND RESPONSIBILITIES

Radiation Safety Officer

- Maintain this procedure and applicable sections of the Radiation Safety Manual.

Authorized Users

- Ensure surveys are performed at the frequency specified in their permit.
- Review and approve Authorized User surveys for their laboratories.
- Maintain annual radiation safety training.

Radiation worker

- Properly perform surveys in accordance with this procedure.
- Maintain annual radiation safety training.

Radiation Safety Technician

- Perform confirmatory surveys, release surveys, transportation surveys, and SCA leak test surveys.
- Maintain annual radiation safety training.

5. ACRONYMS/DEFINITIONS

ALARA: As Low As Reasonably Achievable
AU: Authorized User
GM: Geiger–Müller
ISU: Idaho State University
LAW: Large Area Wipe
PPE: Personal Protective Equipment
RAM: Radioactive Material
RS: Radiation Safety
RSM: Radiation Safety Manual
SCA: Subcritical Assembly
WAL: Waste Addition Log

Contamination: Radioactive material in an unwanted location. Contamination can be both fixed and removable. Removable contamination is easily removed from the surface it is on while fixed contamination remains on its surface despite removal efforts.

External Exposure: Penetrating dose from a radioactive source external to the body.
Internal Exposure: Radioactive material deposited in the body through inhalation, ingestion, injection, or absorption.
Contamination Survey: A survey designed to establish the level of radioactive material that may be on exposed surfaces. Swipes, Large Area Wipes (LAW’s), and direct contact measurements are considered contamination surveys.

Radiation Survey: Measuring the dose rate levels in various locations in a room or facility. This is performed with dose rate instruments to measure x-ray, beta, gamma and neutron fields. Typically done in general area and at 30 cm or 1 meter from a source.

Formal Map Survey: Investigation of the area or item to identify possible contaminates and radiation levels. Legibly documented on a map.

Immediate Work-Area Survey: A survey performed in the immediate work area to grossly identify that there is no significant contamination in the area.

Swipe/Smear: Removable contamination survey method of swiping surface areas and counting it for gross alpha/beta analysis.

Direct Scan: Contact reading of a suspected area of contamination with a survey meter (alpha/beta survey probe).

Large Area Wipe: Removable contamination survey method of using a Masslinn mop or wipe to cover a large area and then perform a direct scan on the Masslinn.

6. REQUIRED MATERIAL(S)
 - Applicable RPR 11 – Contamination and Radiation Survey Form
 - PPE
 - Dosimeter
 - Appropriate Survey Instruments defined in Authorized User permit
 - Swipes
 - Masslinn, and Mop (if applicable)
 - Pen

7. REQUIRED TRAINING(S)
 - ISU Radiation Safety Training
8. PROCEDURE

Surveys should be clear and legible so that there is no question what is being written and it can be understood by anyone. The RPR-11 forms clearly identify the minimum survey requirements and proper way of recording survey results. A completed example form can be found in Appendix B. Once approved, the most recent survey should be posted in or near the laboratory space. Dose rate area postings should be updated to the appropriate signage, dependent on survey results.

8.1. Confirmatory Surveys

Confirmatory Surveys of permitted laboratory spaces are performed by the Radiation Safety Department. They are documented on the RPR-11a form.

8.1.1. Preliminary Steps

8.1.1.1. Obtain an RPR-11a form.

8.1.1.2. Identify the radionuclides that may be present in the survey. The radionuclides present are listed on the Authorized User’s permit. Be aware of any neutron sources that are present in the laboratory. If multiple alpha and beta/gamma emitters are present, then write various on the RPR-11a form.

8.1.1.3. Gather the appropriate survey instrument(s) specified in the permit under the section for Radiation Safety Surveys.

8.1.1.4. Verify the instruments to be used have been daily checked. See the Instrument Performance Log on Google Sheets. If the instrument(s) have not been checked, complete a daily check by following RS-24, Instrument Response Checks procedure.

8.1.1.5. Record the make, model, serial number, calibration due date, and unit of measurement of each instrument on the RPR-11a form.

8.1.1.6. Take a background measurement with each handheld instrument and record the background range on the RPR-11a form. Background measurements should be representative of the area where the survey is being performed.

8.1.1.7. Gather the necessary survey materials. This includes PPE and swipes.

8.1.1.8. Draw a map of the location being surveyed. Maps should be up to date and to scale. Maps can be electronically drawn and printed on the back of the RPR-11a form or drawn by hand. Maps should include room numbers, all doorways, RAM storage cabinets, RAM use area, laboratory furnishings, and any other pertinent information about the area.

8.1.1.9. When applicable, contact the Authorized User to schedule an appropriate time to survey.
8.1.2. Survey

8.1.2.1. Measure the dose rate throughout the area. Take enough dose rate measurements to accurately represent the survey area. Focus on RAM use areas and RAM storage areas. Perform a dose rate measurement 30 cm from all RAM storage areas. When the user permit identifies neutron sources, the same principles apply for neutron dose rate measurements.

8.1.2.2. Record dose rate results on the RPR-11a map. If gamma and neutron dose rate measurements are performed, label them respectively with γ and n on the map. Avoid loitering near RAM storage areas. Record results in a low background area to maintain exposure ALARA.

8.1.2.3. Prepare and collect enough swipes to cover all potentially contaminated areas to accurately represent the area or item being surveyed. The following should be noted while taking swipes:

• Swipes should be collected in a 100 cm² area.

• Take swipes at the entrance to the survey area, both inside and outside. Sink drains, sash/lip of Fume Hoods, rad trash lids, door handles, logbooks, tools used to process RAM, keyboards, etc.

• Briefly frisk each swipe to verify that it is not highly contaminated. If highly contaminated, note count rate on the RPR-11a form but DO NOT analyze on laboratory equipment.

• Swipes are either counted on a proportional counter or liquid scintillation counter (see Authorized User permit). When results are completed, attach them to the survey map.

• When using the proportional counter, first verify that the daily check has been completed on the control chart. Record counting information in the proportional counter logbook.

• The liquid scintillation counter uses a standard rack with background H-3 and C-14 standards that is counted when a sample is started. Record counting details such as the number of vials, date counted, and carrier number(s) in the LSC logbook. A background vial should be used for each carrier.

• Attach swipe results to the RPR-11a form.

8.1.2.4. Direct scans should be performed in locations likely to find contamination (i.e., Fume Hoods, sinks, sample preparation areas, re-usable PPE etc.). Record all area direct scans on the RPR-11a form. Record maximum count rate observed. Scan speeds can be found in Appendix A. If no direct scans are performed due to elevated radiation fields being present, add a comment to the top of the RPR-11a form stating “No direct scans performed due to elevated background.”
8.1.2.5. When the survey has been completed, review that all information is complete and correct, sign it, and submit it to the Radiation Safety Department for review.

8.2. User Surveys

There are two types of User Surveys: Immediate Work Area and Formal Map User Surveys discussed in Section 8.3 and Section 8.4. Immediate Work Area Surveys are performed immediately after radiological work is completed and recorded in the AU’s logbook. Formal Map Surveys are recorded on the RPR-11b form. See the Authorized User’s permit for the frequency of Formal Map Surveys.

8.3. Immediate Work Area Post-Job Surveys

Immediate Work Area Surveys confirm there is no significant contamination from the day’s operation. If contamination is detected above the limits of Table 7 in the RSM, decontamination shall be performed, and a Formal Map User Survey conducted.

8.3.1. Preliminary Steps

8.3.1.1. Be aware of which types of radionuclides are present based on the work performed.

8.3.1.2. Be prepared to conduct the survey by donning the proper PPE and obtaining the needed survey materials. (Lab coat, gloves, Masslinn, swipes, friskers etc.).

8.3.1.3. Verify the instruments to be used have been daily checked. See the Instrument Performance Log on google sheets. If the instrument(s) have not been checked, complete a daily check by following RS-24, Instrument Response Checks procedure.

8.3.2. Survey

8.3.2.1. Direct surveys and/or LAW surveys are used to assess the work area when detectable nuclides were used.

8.3.2.2. LAW areas where RAM may have spilled or been released. (Fume Hood sash/lid, floor near work area, etc.)

8.3.2.3. Direct scan each Masslinn in a low background area. Scan speeds can be found in Appendix A.

8.3.2.4. Frisk the work area. See Appendix A.

8.3.2.5. When non-detectable nuclides (low-energy beta emitters) or pure alpha-emitting radionuclides are used, perform a swipe survey.
8.3.2.6. Prepare and collect enough swipes to assess the immediate work area. The following should be noted while taking swipes:

- Swipes should be collected in a 100 cm2 area.
- Briefly frisk Swipes to verify they are not highly contaminated. If the swipes are highly contaminated note count rate in the AU logbook but DO NOT analyze on laboratory equipment.
- Count the swipes on the appropriate survey equipment according to the Authorized User permit.

8.3.2.7. Record the results of the immediate work area survey in the laboratory logbook. The make, model, serial number, calibration due date, background measurement, and units of measurement of all instruments used in the survey should be included in the entry.

8.4. Formal Map User Surveys

8.4.1. Preliminary Steps

8.4.1.1. Obtain an RPR-11b form.

8.4.1.2. Identify the radionuclides that may be present in the survey. The radionuclides present are listed on the Authorized Users permit. Be aware of any neutron sources that are present in the laboratory. If multiple alpha and beta/gamma emitters are present, then write various on the RPR-11b form.

8.4.1.3. Gather the appropriate survey instrument(s) specified in the permit under the section for Radiation Safety Surveys.

8.4.1.4. Verify the instruments to be used have been daily checked. See the Instrument Performance Log on google sheets. If the instrument(s) have not been checked, complete a daily check by following RS-24, Instrument Response Checks procedure.

8.4.1.5. Record the make, model, serial number, calibration due date, and unit of measurement of each instrument on the RPR11b form.

8.4.1.6. Take a background measurement with each handheld instrument and record the background range on the RPR-11b form. Background measurements should be representative of the area where the survey is being performed.

8.4.1.7. Gather the necessary survey materials. This includes PPE, swipes, and Masslinn.

8.4.1.8. Draw an updated map of the location being surveyed. Maps should be up to date and to scale. Maps can be drawn by hand or electronically designed and printed on the back of the RPR-11b form. Maps should include room numbers, all doorways,
RAM storage cabinets, RAM use areas, laboratory furnishings, and any other pertinent information about the area.

8.4.1.9. When applicable, contact the Authorized User to schedule an appropriate time to survey.

8.4.2. Survey

8.4.2.1. For areas with significant potential for removable contamination, take enough LAWs to cover the majority of the work area and record results on the RPR-11b form. The following should be noted while taking Large Area Wipes:

- A LAW is performed by using the Masslinn cloth and wiping the surface areas with a gloved hand.
- LAWs are direct scanned with a survey meter for removable contamination. Scan speeds can be found in Appendix A.
- It is acceptable to reuse the same Masslinn if the levels are found to be indistinguishable from background.

8.4.2.2. If contamination is found on the LAW, decontaminate the area using cleaning products. Dry the area or wait until dry and repeat LAW in the area. Repeat until the net count rate on the LAW is less than the action levels specified in Table 7, Section 11 of the RSM.

8.4.2.3. Measure the dose rate throughout the area. Take enough dose rate measurements to accurately represent the survey area. Focus on RAM use areas, high contact areas (i.e., sinks, door handles, etc.), and RAM storage areas. Perform a dose rate measurement 30 cm from all RAM storage areas. When the user permit identifies neutron sources, the same principles apply for neutron dose rate measurements.

8.4.2.4. Record dose rate results on the RPR-11b map. If gamma and neutron dose rate measurements are performed, label them respectively with γ and n on the map. Avoid loitering near RAM storage areas. Record results in a low background area to maintain exposure ALARA.

8.4.2.5. Prepare and collect enough swipes to cover all potentially contaminated areas as well as accurately represent the area or item being surveyed. The following should be noted while taking swipes:

- Swipes should be collected in a 100 cm² area.
- Swipes should be taken at the entrance to the survey area, both inside and outside. Sink drains, sash/lip of Fume Hoods, door handles, logbooks, tools used to process RAM, keyboards, etc.
- Briefly frisk each swipe to verify that it is not highly contaminated. If highly contaminated, note count rate on the RPR-11b form but DO NOT analyze on
laboratory equipment.

- Swipes are either counted on a proportional counter or liquid scintillation counter (see Authorized User permit). When results are completed, attach them to the survey map.

- When using the proportional counter, first verify that the daily check has been completed on the control chart. Record counting information in the proportional counter logbook.

- The liquid scintillation counter uses a standard rack with background H-3 and C-14 standards that is counted when a sample is started. Record counting details such as the number of vials, date counted, and carrier number(s) in the LSC logbook. A background vial should be used for each carrier.

- Attach swipe results to the RPR-11b form.

8.4.2.6. Direct scans should be performed in locations likely to find contamination (i.e., Fume Hoods, sample preparation areas, etc.). Record all area Direct Scans on the RPR-11b form. Scan speeds can be found in Appendix A. If no direct scans are performed due to elevated radiation fields being present, add a comment to the top of the RPR-11b form stating “No direct scans performed due to elevated background.”

8.4.2.7. When finished with the survey, review that all information is complete and correct, sign it, and submit it to the Radiation Safety Department or Authorized User for review.

8.5. Release Surveys

Release Surveys are performed on items or equipment to be released for repair or unrestricted use that have been used with dispersible radioactive materials or may have been activated. Release Surveys are recorded on the RPR-11c form. Release Surveys are typically performed by Radiation Safety Technicians from the Radiation Safety Department. Please contact the Radiation Safety Department if something needs to be released.

8.5.1. Preliminary Steps

8.5.1.1. Obtain an RPR-11c form. Contact the Authorized User to determine if the item is potentially activated or to identify radionuclides that may be present. Identify if there are internal surfaces where RAM may be present in the comments section. Identify the action levels based on what radionuclides may be present (See Table 7 of the RSM). Record action levels for removable and average total contamination on the RPR-11c form.
8.5.1.2. Gather the appropriate survey instrument(s) for the release survey. Appropriate instruments may include a rate meter with GM probe or alpha/beta probe, and Model-19 NaI based dose rate meter if the item is potentially activated.

8.5.1.3. Verify the instruments to be used have been daily checked. See the Instrument Performance Log on google sheets. If the instrument(s) have not been checked, complete a daily check by following RS-24, Instrument Response Checks procedure.

8.5.1.4. Record the make, model, serial number, calibration due date, and unit of measurement unit of each instrument on the RPR-11c form.

8.5.1.5. Take a background measurement with each handheld instrument and record the background range on the RPR-11c form. Background measurements should be representative of the area where the survey is being performed.

8.5.1.6. Gather the necessary survey materials. This includes PPE, swipes, and Masslinn.

8.5.1.7. Preferably, take photographs of the item. Add survey points to the photographs.

8.5.1.8. Alternatively, prepare a map of the item being surveyed. Maps should include all items surveyed for release. Maps should be legible and to scale. If this is not achievable, then a picture needs to be used instead. The item being surveyed for release should be stationed in a low background area in order to conduct the survey.

8.5.2. Survey

8.5.2.1. Scan 100% of the item with the contamination survey instrument. Complete questions regarding direct frisk. Scan speeds can be found in Appendix A. If positive results are found in the direct frisk, perform 30 second static counts at the location and record results on the RPR-11c form. Note all internal surfaces and areas in the comments where direct scans or swipes are not possible.

8.5.2.2. If potentially activated, survey the entire surface of the item with a Ludlum Model 19 μR meter. Survey 1 to 2 cm from the surface of the item. Use the same survey speed specified for frisking in Appendix A. Answer questions regarding activation and μR survey on the RPR-11c form. If dose rates become too high for the Model 19, it is acceptable to then move to a Model 9 or equivalent to quantify the dose rates.

8.5.2.3. Take enough LAWs to cover all surfaces of the object and record results on the RPR-11c form. Follow the following list for LAWs:

- A LAW is performed by using the Masslinn cloth and wiping the surface areas with a gloved hand.
- LAWs are direct scanned with a survey meter for removable contamination.
Scan speeds can be found in Appendix A.

- It is acceptable to reuse the same Masslinn if the levels are found to be indistinguishable from background.

8.5.2.4. If contamination is found from the LAW, decontaminate the item by using cleaning products. Dry the area or wait until dry and perform a second LAW on the item. Repeat until indistinguishable from background or less than action levels specified in Table 7, Section 11 of the RSM. Record results on the RPR-11c form.

8.5.2.5. Prepare and collect enough swipes to cover all openings as well as accurately represent the item being surveyed. The following should be noted while taking swipes:

- Swipes should be collected in a 100 cm² area for release items.
- Briefly frisk each swipe to verify that it is not highly contaminated. If highly contaminated, note count rate on the RPR-11c form but DO NOT analyze on laboratory equipment.
- Swipes are either counted on a proportional counter or liquid scintillation counter, depending on isotopes that may be present. When results are completed, attach them to the survey map.
- When using the proportional counter, first verify that the daily check has been completed on the control chart. Record counting information in the proportional counter logbook.
- The liquid scintillation counter uses a standard rack that is counted when a sample is started. Record counting details such as the number of vials, date counted, and carrier number(s) in the LSC logbook. A background vial should be used for each carrier.

8.5.2.6. When the survey is complete, review that all information is complete and correct, sign it, and submit it to the Radiation Safety Department for review.

8.6. Transportation Surveys

Transportation surveys are performed in conjunction with RS-08, Transfer and Transport of Radioactive Material and are performed by the Radiation Safety Department technicians and staff.

8.6.1. Preliminary Steps

8.6.1.1. Obtain an RPR-11d form.

8.6.1.2. Gather required materials (Gamma dose rate meter, frisker, swipes, LAW, and neutron dose rate meter if neutron-emitting sources are present). A μR/hr dose rate
meter should be used initially for all shipments, graduating to a mR/hr dose rate meter if the package dose rate requires a larger scale.

8.6.1.3. Verify the instruments to be used have been daily checked. See the Instrument Performance Log on google sheets. If the instrument(s) have not been checked, complete a daily check by following RS-24, Instrument Response Checks procedure.

8.6.1.4. Record the make, model, serial number, calibration due date, and unit of measurement for each instrument.

8.6.1.5. Perform surveys in a low background area.

8.6.1.6. Take a background measurement with each handheld instrument and record the background range on the RPR-11d form. Background measurements should be representative of the area where the survey is being performed.

8.6.1.7. Enter the shipment number, UN number, and label category.

8.6.2. Survey

8.6.2.1. Perform a dose rate survey on the shipment container. Find the highest on-contact reading and record it on the RPR-11d form. Measure 1-meter from the highest point and take a second reading. Record the 1-meter reading on the RPR-11d form. Measure neutron dose rates in the same manner when neutron-emitting material is present.

8.6.2.2. Record dose rate results on the RPR-11d map. If gamma and neutron dose rate measurements are performed, label them respectfully with γ and n on the map. Avoid loitering near RAM storage areas. Record results in a low background area to maintain exposure ALARA.

8.6.2.3. Collect 300 cm2 swipes of the container and record the location on the RPR-11d form. Briefly frisk each swipe to verify that it is not highly contaminated. If highly contaminated, note the count rate on the RPR-11d form but DO NOT analyze on the laboratory equipment. Dispose of the swipe in the radioactive waste bin and perform a decontamination of the container and re-swipe it.

8.6.2.4. When using the proportional counter, liquid scintillation counter, or alpha/beta scalar, first verify that all control measurements have been performed in accordance with the user procedure. Attach a printout of the swipe results to the form.

8.6.2.5. Take a LAW over the entire surface of the container and scan the LAW with a GM frisker for removable contamination. Record the result on the RPR-11d form.

8.6.2.6. When the survey is complete, review that all information is complete and correct, sign it, and submit it to the Radiation Safety Department for review.
8.7. Trash Survey

Trash Surveys are typically performed on trash bags collected from restricted or controlled areas near radioactive material use areas. Trash Surveys ensure no radioactive sources or material have been unintentionally placed in the non-rad trash. Trash Surveys are recorded on the RPR-11e form. Trash surveys may be performed by any Radiation Worker.

8.7.1. Preliminary Steps

8.7.1.1. Gather the appropriate survey instrument(s) for the release survey. Appropriate instruments may include a rate meter with GM probe or alpha/beta probe, and Model-19 NaI based dose rate meter (or equivalent).

8.7.1.2. Verify the instruments to be used have been daily checked. See the Instrument Performance Log on google sheets. If the instrument(s) have not been checked, complete a daily check by following RS-24, Instrument Response Checks procedure.

8.7.1.3. Record the make, model, serial number, calibration due date, and unit of measurement unit of each instrument on the RPR-11e form.

8.7.1.4. Take a background measurement with each handheld instrument and record the background range on the RPR-11e form. Background measurements should be representative of the area where the survey is being performed.

8.7.1.5. The trash being surveyed should be stationed in a low background area in order to conduct the survey.

8.7.1.6. Don the appropriate PPE for the survey.

8.7.2. Survey

8.7.2.1. Scan 100% of the trash with the contamination survey instrument. Complete questions regarding direct frisk. Scan speeds can be found in Appendix A. If positive results are found in the direct frisk, perform 30 second static counts at the location and record results on the RPR-11e form.

8.7.2.2. Survey the entire surface of the trash with a Ludlum Model 19 μR meter (or equivalent). Survey 1 to 2 cm from the surface of the item. Use the same survey speed specified for frisking in Appendix A. Answer questions regarding activation and μR survey on the RPR-11e form.

8.7.2.3. Any measurements outside of the established background ranges need to be further evaluated by the Radiation Safety Department prior to putting it into the ordinary trash.

8.7.3. When the survey is complete, review that all information is complete and correct, sign it, and submit it to the Radiation Safety Department for review.
8.8. Waste Survey

Waste Surveys are performed on radioactive waste containers prior to shipment for disposal. Waste Surveys ensure that all containers destined for waste pick-up meet shipping requirements. Waste Surveys are recorded on the RPR-11f form. Waste Surveys are to be performed by Radiation Safety Technicians from the Radiation Safety Department. Please contact the Radiation Safety Department if any Radioactive waste container needs to be surveyed.

8.8.1. Preliminary Steps

8.8.1.2. Record the name, type, weight, and the fullness fraction of the container being surveyed on the RPR-11f form. Answer questions regarding the Waste Addition Logs on the RPR-11f form.

8.8.1.3. Identify the radionuclides that may be present in the survey. The radionuclides present should be posted on the drum with activities or logged in the Waste Addition Log. Be aware of any neutron sources that are present in the container. If multiple alpha and beta/gamma emitters are present, then write various on the RPR-11a form.

8.8.1.4. Gather required materials (Gamma dose rate meter, frisker, swipes, LAW, and neutron dose rate meter if neutron-emitting sources are present) A μR/hr dose rate meter should be used initially for all shipments, graduating to a mR/hr dose rate meter if the package dose rate requires a larger scale.

8.8.1.5. Verify the instruments to be used have been daily checked. See the Instrument Performance Log on google sheets. If the instrument(s) have not been checked, complete a daily check by following RS-24, Instrument Response Checks procedure.

8.8.1.6. Record the make, model, serial number, calibration due date, and unit of measurement of each instrument.

8.8.1.7. Perform surveys in a low background area.

8.8.1.8. Take a background measurement with each handheld instrument and record the background range on the RPR-11d form. Background measurements should be representative of the area where the survey is being performed.

8.8.2. Survey

8.8.2.1. Perform a dose rate survey on the waste container. Find the highest on-contact reading and record on the front of the RPR-11f form. Measure 1 meter from the highest point and take a second reading. Record the 1-meter reading on the front of
the RPR-11f form. Measure neutron dose rates in the same manner when neutron-emitting material is present.

8.8.2.2. Record dose rate results on the RPR-11f map. If gamma and neutron dose rate measurements are performed, label them respectively with γ and n on the map. Avoid loitering near RAM storage areas. Record results in a low background area to maintain exposure ALARA.

8.8.2.3. Collect 300 cm2 swipes of the container and record the location on the RPR-11d form. Briefly frisk each swipe to verify that it is not highly contaminated. If highly contaminated, note count rate on the RPR-11f form but DO NOT analyze on laboratory equipment.

8.8.2.4. When using the proportional counter, liquid scintillation counter, or alpha beta scalar, first verify that all control measurements have been performed in accordance with the user procedure. Attach a printout of the swipe results to the form.

8.8.2.5. Take a LAW over the surface of the entire container and scan with a GM frisker for removable contamination. Record the result on the RPR-11f form.

8.8.2.6. When the survey is complete, review that all information is complete and correct, sign it, and submit it to the Radiation Safety Department for review.

8.9. Ten Percent Survey of SCA Plates

The Sub-Critical Assembly (SCA) fuel plates are leak tested annually and after each experimental use. Ten percent of the SCA plates used in an experiment are selected and leak tested as specified below. During the September inventory, ten percent (15 plates) are surveyed as specified below. The ten percent survey is performed with the Reactor Supervisor or designated back-up and in accordance with the applicable requirements of the Subcritical Assembly Procedure.

8.9.1. Gather the required materials: Gloves, pen, SCA Leak Test Survey Form, GM frisker, swipes, (2) 20 mL liquid scintillation vials, and pipette with disposable tips.

8.9.2. Randomly select the 10% of the fuel plates used in the experiment or 15 plates if the performing the September inventory from the fuel locker and write the fuel plate number and corresponding swipe number on the SCA Leak Test Survey Form.

8.9.3. Swipe the surface of each fuel plate, focusing on the edges, with the corresponding swipe number and collect the swipes in a bag.

8.9.4. Return the SCA plates to the fuel locker, ensure it is locked, and make an entry into the SCA laboratory notebook indicating the Ten Percent Survey was performed with a date and time.
8.9.5. Use the pipette to collect a 5 mL water sample from the SCA tank and dispense it into one of the vials.

8.9.6. Use the pipette to collect a 5 mL water sample from the Reactor tank and dispense it into the remaining vial.

8.9.7. Transfer the swipes and water samples to the Radiation Safety Department counting laboratories.

8.9.8. Count the swipes on the proportional counter.

8.9.9. Add 15 mL of scintillation cocktail to each of the water sample vials, shake them well to make sure solute and solvent are dissolved completely, and count them on the liquid scintillation counter.

8.9.10. Compile the SCA Leak Test Form, swipe results, water sample results and attach to Ten Percent Survey Report.

8.9.11. Update the applicable areas of the Ten Percent Survey Report and submit it to the RSO/ARSO for review.

9. LIST OF FORMS

 RPR-11a – Laboratory Confirmatory Survey Form
 RPR-11b – User Formal Map Survey Form
 RPR-11c – Release Survey Form
 RRP-11d – Transportation Survey Form
 RRP-11e – Trash Survey Form
 RRP-11f – Waste Survey Form
 SCA Leak Test Survey Form
 SCA Ten Percent Survey Report

10. REFERENCES

 None.

11. CHANGE HISTORY

 Revision 1 – Included formatting updates in accordance with RS-27, the addition of the Ten Percent Survey of SCA Plates section, and general clarification throughout the document.
Revision 2 – Added Sections 8.7 – Trash Surveys & 8.8 – Waste Survey, and minor additions & grammatical corrections to previous steps for consistency throughout sections.

12. APPENDICES

APPENDIX A – Frisking Directions
APPENDIX B – Example Surveys and Results
APPENDIX A – Frisking Directions

- For survey meters it is important to strive to maintain a consistency of survey rate and distance.

- When surveying something, ¼ to ½” distance from the surface should be maintained so that the probe is not too far away from the surface to measure contamination but not too close to touch a potentially contaminated area and become contaminated.
 - Avoid using the probe to survey the bottom of something. When surveying feet or shoe covers, lift your leg up so that the probe is surveying vertically to prevent contaminating the probe.

- In general, the best way to determine how to survey something is by covering the width of the detector per second.
 - This is only about 1-2” per second for the 44-9 GM probe.

- The fast response should be used when looking for contamination, such as in a direct scan.

- The slow response should be when you want to quantify contamination.

- When scanning an area, use an “S” pattern making sure to stop when you audibly or visually see counts recording above background.
APPENDIX B – Example Surveys and Results

<table>
<thead>
<tr>
<th>Swipe</th>
<th>Location</th>
<th>Swipe</th>
<th>Location</th>
<th>Direct</th>
<th>Location</th>
<th>Results (cpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Door Handle</td>
<td>20</td>
<td>Keyboard</td>
<td>1</td>
<td>Door Handle</td>
<td>BKG</td>
</tr>
<tr>
<td>2</td>
<td>Floor</td>
<td>21</td>
<td>Window Seal</td>
<td>2</td>
<td>Floor</td>
<td>BKG</td>
</tr>
<tr>
<td>3</td>
<td>Cabinet Handle</td>
<td>22</td>
<td>Window Seal</td>
<td>3</td>
<td>Cabinet Handle</td>
<td>BKG</td>
</tr>
<tr>
<td>4</td>
<td>Floor</td>
<td>4</td>
<td>Floor</td>
<td>4</td>
<td>Floor</td>
<td>BKG</td>
</tr>
<tr>
<td>5</td>
<td>Floor</td>
<td>5</td>
<td>Top Surface</td>
<td>5</td>
<td>Top Surface</td>
<td>BKG</td>
</tr>
<tr>
<td>6</td>
<td>Floor</td>
<td>6</td>
<td>Office</td>
<td>6</td>
<td>Handbag</td>
<td>BKG</td>
</tr>
<tr>
<td>7</td>
<td>Floor</td>
<td>7</td>
<td>Shielding</td>
<td>7</td>
<td>Shielding</td>
<td>BKG</td>
</tr>
<tr>
<td>8</td>
<td>Door Knob</td>
<td>8</td>
<td>NVRAR</td>
<td>8</td>
<td>NVRAR</td>
<td>BKG</td>
</tr>
<tr>
<td>9</td>
<td>Floor</td>
<td>9</td>
<td>Floor</td>
<td>9</td>
<td>Floor</td>
<td>BKG</td>
</tr>
<tr>
<td>10</td>
<td>Water Tank</td>
<td>10</td>
<td>Console</td>
<td>10</td>
<td>Console</td>
<td>BKG</td>
</tr>
<tr>
<td>11</td>
<td>Battery</td>
<td>11</td>
<td>Keyboard</td>
<td>11</td>
<td>Keyboard</td>
<td>BKG</td>
</tr>
<tr>
<td>12</td>
<td>Radioactive</td>
<td>12</td>
<td>Window Seat</td>
<td>12</td>
<td>Window Seat</td>
<td>BKG</td>
</tr>
<tr>
<td>13</td>
<td>Buckets</td>
<td>13</td>
<td>Window Seat</td>
<td>13</td>
<td>Window Seat</td>
<td>BKG</td>
</tr>
</tbody>
</table>

Instruments were Source Checked prior to survey

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Make</th>
<th>Model</th>
<th>Serial</th>
<th>Cal due</th>
<th>BKG</th>
<th>Range</th>
<th>Unit</th>
<th>Action Levels:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ludlum</td>
<td>9-4</td>
<td>291728</td>
<td>Apr 24</td>
<td></td>
<td></td>
<td></td>
<td>α: 20 dpm/100cm²</td>
</tr>
<tr>
<td></td>
<td>Ludlum</td>
<td>3</td>
<td>88292</td>
<td>Dec 23</td>
<td></td>
<td>50-150</td>
<td>cpm</td>
<td>β: 1000 dpm/100cm²</td>
</tr>
<tr>
<td></td>
<td>Ludlum</td>
<td>12-4</td>
<td>345994</td>
<td>Dec 23</td>
<td></td>
<td><0.1</td>
<td>mrem/hr</td>
<td></td>
</tr>
</tbody>
</table>

For Reviewer:
- Action Level: Y ()
- MDA: Y ()

1 If swipes are > action level after 2nd analysis notify RSO or designee and decontaminate area.
Radiation Safety

Procedure #: RS-03 Rev.2
Procedure Title: Radiological Surveys
Approval Date: 04/25/2024
Effective Date: 05/31/2024

RPR-11a Confirmatory Survey Form

* On contact, Dose Rate (W/\(\text{h}\))

1. Large Area Wipe

- 30 cm to indicate a Dose Rate at 30 cm

- Swipe

- Direct Scan

* If swipes are > action level after 2nd analysis notify RSO or designee and decontaminate area.
Sample Report

Batch ID: Smear - 202312071328
Group: B
Device: S5XLB 10106542
Batch Key: 11956
Selected Geometry 1/8" Stainless Steel

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample Type</th>
<th>Alpha (cpm)</th>
<th>Unc</th>
<th>Alpha MDA (dpm)</th>
<th>Beta (dpm)</th>
<th>Unc</th>
<th>Beta MDA (dpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20231207132857-B11</td>
<td>Unknown</td>
<td>0.28</td>
<td>0.74</td>
<td>3.66</td>
<td>-0.92</td>
<td>1.02</td>
<td>5.49</td>
</tr>
<tr>
<td>202312071335008-B12</td>
<td>Unknown</td>
<td>0.28</td>
<td>0.74</td>
<td>3.66</td>
<td>0.32</td>
<td>1.34</td>
<td>5.49</td>
</tr>
<tr>
<td>20231207133918-B13</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>-0.17</td>
<td>1.19</td>
<td>5.44</td>
</tr>
<tr>
<td>20231207143428-B14</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>1.06</td>
<td>1.47</td>
<td>5.44</td>
</tr>
<tr>
<td>20231207143418-B15</td>
<td>Unknown</td>
<td>0.88</td>
<td>1.02</td>
<td>3.66</td>
<td>0.20</td>
<td>1.35</td>
<td>5.62</td>
</tr>
<tr>
<td>20231207143515-B16</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>-0.79</td>
<td>1.01</td>
<td>5.44</td>
</tr>
<tr>
<td>20231207135800-B17</td>
<td>Unknown</td>
<td>0.29</td>
<td>0.74</td>
<td>3.66</td>
<td>-1.53</td>
<td>1.81</td>
<td>5.49</td>
</tr>
<tr>
<td>20231207140019-B18</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>0.45</td>
<td>1.34</td>
<td>5.44</td>
</tr>
<tr>
<td>20231207140420-B19</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.67</td>
<td>1.68</td>
<td>1.60</td>
<td>5.44</td>
</tr>
<tr>
<td>20231207140838-B20</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>-0.79</td>
<td>1.01</td>
<td>5.44</td>
</tr>
<tr>
<td>20231207141300-B21</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>1.06</td>
<td>1.47</td>
<td>5.44</td>
</tr>
<tr>
<td>20231207141710-B22</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>-0.17</td>
<td>1.19</td>
<td>5.44</td>
</tr>
<tr>
<td>20231207142120-B23</td>
<td>Unknown</td>
<td>0.28</td>
<td>0.74</td>
<td>3.66</td>
<td>-0.30</td>
<td>1.19</td>
<td>5.49</td>
</tr>
<tr>
<td>20231207142530-B24</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>1.06</td>
<td>1.47</td>
<td>5.44</td>
</tr>
<tr>
<td>20231207142940-B25</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>-0.79</td>
<td>1.01</td>
<td>5.44</td>
</tr>
<tr>
<td>20231207143401-B26</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>-0.79</td>
<td>1.01</td>
<td>5.44</td>
</tr>
<tr>
<td>20231207143811-B27</td>
<td>Unknown</td>
<td>0.98</td>
<td>1.02</td>
<td>3.66</td>
<td>-1.66</td>
<td>0.82</td>
<td>5.62</td>
</tr>
<tr>
<td>20231207144221-B28</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>-0.17</td>
<td>1.19</td>
<td>5.44</td>
</tr>
<tr>
<td>20231207144631-B29</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>-0.17</td>
<td>1.19</td>
<td>5.44</td>
</tr>
<tr>
<td>20231207145042-B30</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>-0.79</td>
<td>1.01</td>
<td>5.44</td>
</tr>
<tr>
<td>20231207145452-B31</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>-0.79</td>
<td>1.01</td>
<td>5.44</td>
</tr>
<tr>
<td>20231207145912-B32</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>1.06</td>
<td>1.47</td>
<td>5.44</td>
</tr>
</tbody>
</table>

Reviewed by: Miranda King 12/12/23
Radiological Surveys

Building: PS
Room: 102
Program: 1
Date: 11/2/23
Radiouclides present: Not U
Comments: TEM Grid Staining
Performed by: Miranda Kinzer
Reviewed by: Nicole Halter

Swipe Location - Radiation Levels

<table>
<thead>
<tr>
<th>Swipe</th>
<th>Location</th>
<th>Direct</th>
<th>Location</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Work Area</td>
<td>1</td>
<td>Work Area</td>
<td>BKG</td>
</tr>
<tr>
<td>2</td>
<td>Frame Hood - Sash</td>
<td>2</td>
<td>Frame Hood - Sash</td>
<td>BKG</td>
</tr>
<tr>
<td>3</td>
<td>Frame Hood - Apron</td>
<td>3</td>
<td>Frame Hood - Apron</td>
<td>BKG</td>
</tr>
<tr>
<td>4</td>
<td>Uranium Acetate Bag</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Radiation Levels

- **Instrument:** Ludlum
 - **Model:** 3
 - **Serial:** 2894976
 - **Cal due:** Jun '24
 - **BKG Range:** 0 - 500
 - **Unit:** Cpm

- **Action Levels:**
 - **a:** 20 dpm/100cm²
 - **β:** 1000 dpm/100cm²

If swipes are > action level after 2nd analysis notify RSO or designee and decontaminate area.
RPR-11b User Formal Map Survey Form

* On contact Dose Rate (uSv/h) Large Area Wipe

- 30cm To indicate Dose Rate at 30 cm (uSv/h)

☐ Swipe

Direct Scan

* If swipes are > action level after 2nd analysis notify Authorized User or designee and decontaminate area.
Procedure #: RS-03 Rev.2
Procedure Title: Radiological Surveys
Approval Date: 04/25/2024
Effective Date: 05/31/2024

Building: IAC
Room: Trineu
Program: 1
Date: 9/1/2023
Radionuclides present: N/A

Comments: Bucket in trineu holding area containing items used in accelerator case.

Performed by: Jordan Bust
Reviewed by: Miranda Kriner

<table>
<thead>
<tr>
<th>Swipe</th>
<th>Location</th>
<th>Law</th>
<th>Location</th>
<th>Results (cpm)</th>
<th>Direct</th>
<th>Location</th>
<th>Results (cpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bucket Exterior</td>
<td>1</td>
<td>Bucket Exterior</td>
<td>9K6</td>
<td>1</td>
<td>Bucket Exterior</td>
<td>9K6</td>
</tr>
<tr>
<td>2</td>
<td>Bucket Interior 2</td>
<td>2</td>
<td>Bucket Interior</td>
<td>9K6</td>
<td>2</td>
<td>Bucket Interior</td>
<td>9K6</td>
</tr>
<tr>
<td>3-4</td>
<td>Sand Bags 3-4</td>
<td>3-4</td>
<td>Sand Bags</td>
<td>9K6</td>
<td>3-4</td>
<td>Sand Bags</td>
<td>9K6</td>
</tr>
<tr>
<td>5-7</td>
<td>Padding 5-7</td>
<td>5-7</td>
<td>Padding</td>
<td>9K6</td>
<td>5-7</td>
<td>Padding</td>
<td>9K6</td>
</tr>
</tbody>
</table>

Internal Surfaces ☑️
Frisk performed over all surfaces ☑️
Frisk results within BKG range ☑️
Potentially Activated ☑️
µR Survey over all surfaces ☑️/NA
µR Survey within BKG range ☑️/NA
Photographs attached ☑️
Instruments were Source Checked ☑️ prior to survey

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Make</th>
<th>Model</th>
<th>Serial</th>
<th>Cal due</th>
<th>BKG Range</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ludlum</td>
<td>19</td>
<td>253044</td>
<td>Jun 2024</td>
<td>10-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Action Levels:
- α: 20 dpm/100cm² Removable
- β: 1000 dpm/100cm² Removable
- α: 20 dpm/100cm² Average total
- β: 1000 dpm/100cm² Average total

For Reviewer:
Are survey results > Action Level Y ☑️ N
Are survey results > MDA? Y ☑️ N
Sample Report

<table>
<thead>
<tr>
<th>Batch ID:</th>
<th>Smear - 202309011324</th>
<th>Count Date:</th>
<th>9/1/2023 1:24:36PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group:</td>
<td>D</td>
<td>Count Minutes:</td>
<td>4.00</td>
</tr>
<tr>
<td>Device:</td>
<td>SSXLB 10106542</td>
<td>Count Mode:</td>
<td>Simultaneous</td>
</tr>
<tr>
<td>Batch Key:</td>
<td>11609</td>
<td>Operating Volts:</td>
<td>1380</td>
</tr>
<tr>
<td>Selected Geometry:</td>
<td>1/8" Stainless Steel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Background (cpm)</th>
<th>Efficiency (%)</th>
<th>Spillover (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Rate:</td>
<td>0.15 ± 0.09</td>
<td>Alpha: 35.85 ± 0.29</td>
</tr>
<tr>
<td>Beta Rate:</td>
<td>0.85 ± 0.21</td>
<td>Beta: 40.43 ± 0.35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample Type</th>
<th>Alpha (dpm)</th>
<th>Unc</th>
<th>Alpha MDA (dpm)</th>
<th>Beta (dpm)</th>
<th>Unc</th>
<th>Beta MDA (dpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20230901132436-D67</td>
<td>Unknown</td>
<td>5.85</td>
<td>2.11</td>
<td>3.67</td>
<td>-7.97</td>
<td>2.70</td>
<td>6.43</td>
</tr>
<tr>
<td>20230901133047-D68</td>
<td>Unknown</td>
<td>4.46</td>
<td>1.86</td>
<td>3.67</td>
<td>-8.37</td>
<td>2.47</td>
<td>6.22</td>
</tr>
<tr>
<td>20230901133457-D69</td>
<td>Unknown</td>
<td>0.97</td>
<td>1.02</td>
<td>3.67</td>
<td>-5.76</td>
<td>2.29</td>
<td>5.62</td>
</tr>
<tr>
<td>20230901133907-D70</td>
<td>Unknown</td>
<td>-0.42</td>
<td>0.24</td>
<td>3.66</td>
<td>-0.79</td>
<td>1.01</td>
<td>5.44</td>
</tr>
<tr>
<td>20230901134327-D71</td>
<td>Unknown</td>
<td>2.37</td>
<td>1.42</td>
<td>3.67</td>
<td>5.15</td>
<td>2.30</td>
<td>5.87</td>
</tr>
<tr>
<td>20230901134737-D72</td>
<td>Unknown</td>
<td>0.28</td>
<td>0.74</td>
<td>3.67</td>
<td>3.41</td>
<td>1.93</td>
<td>5.49</td>
</tr>
<tr>
<td>20230901135145-D73</td>
<td>Unknown</td>
<td>0.28</td>
<td>0.74</td>
<td>3.67</td>
<td>2.18</td>
<td>1.72</td>
<td>5.49</td>
</tr>
</tbody>
</table>

Reviewed by: Miranda Kriner 9/1/2023

Page 1 of 1
Building: IAC
Room: Count lab
Program: IDD-03
Date: 01-01-22
Radionuclides present: Cu-67

Comments:

Performed by: [Signature]
Reviewed by: [Signature]

<table>
<thead>
<tr>
<th>Swipe</th>
<th>Location</th>
<th>LAW</th>
<th>Location</th>
<th>Results (cpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Via1</td>
<td></td>
<td>Box</td>
<td>< 5K9</td>
</tr>
<tr>
<td>2</td>
<td>Box</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum Contact Dose Rate/unit: 163 μR/hr
Maximum 1 M Dose Rate/unit: 259 μR/hr

Instruments were Source Checked prior to survey

Shipment number: 22-02
UN: 2915
Label Category: White label I

Action Levels:
- α: 720 dpm/300cm²
- β/γ: 7200 dpm/300cm²

RPR 14 has been completed and reviewed? Y/N
RPR-55 Checklist has been completed? Y/N
Are survey results > Action Level Y/N
Are Results > MDA Y/N
RPR 14 has been completed and reviewed? Y/N
RPR-55 Checklist has been completed? Y/N
Procedure #: RS-03 Rev.2

Procedure Title: Radiological Surveys

Approval Date: 04/25/2024

Effective Date: 05/31/2024

On contact Dose Rate

-1 m to indicate a Dose Rate at 1 m

Large Area Wipe

Swipe
Procedure #: RS-03 Rev.2
Procedure Title: Radiological Surveys
Approval Date: 04/25/2024
Effective Date: 05/31/2024

RPR-1le Trash Survey Form

Building: IAC
Room: Count lab
Program: 1
Date: 10/30/23
Radionuclides present: N/A

Comments:
Trash in count lab

Performed by: [Signature]
Reviewed by: [Signature]

Top
#1
#2
#3
Bottom

Direct Scan
On contact Dose Rate []

Instruments were Source Checked [] prior to survey

Instrument
Make: Ludlum
Model: 3
Serial: 73047
Cal due: Mar 2024
BKG Range: 50 - 100
Unit: cpm

Instrument
Make: Ludlum
Model: 19
Serial: 250437
Cal due: Aug 24
BKG Range: 10 - 20
Unit: μR/hr

Instrument
Make: [Blank]
Model: [Blank]
Serial: [Blank]
Cal due: [Blank]
BKG Range: [Blank]
Unit: [Blank]

Action Levels:
α: 2O dpm/100cm² Removable
β: 5,000 dpm/100cm² Removable
α: 2O dpm/100cm² Average total
β: 1,000 dpm/100cm² Average total

Frisk performed over all surfaces [Y/N]
Frisk results within BKG range [Y/N]
μR Survey performed over all surfaces [Y/N/NA]
μR Survey results within BKG range [Y/N/NA]
RPR-21f Waste Survey Form

<table>
<thead>
<tr>
<th>Swipe</th>
<th>Location</th>
<th>LAW</th>
<th>Location</th>
<th>Results (cpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>top</td>
<td></td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>side</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bottom</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum Contact Dose Rate/unit: $2000\mu\text{R}/\text{h}$

Maximum 1 M Dose Rate/unit: $200\mu\text{R}/\text{h}$

Instruments were Source Checked prior to survey

Container Name: WRH-16 June 23

Container Type: 55 gallon drum

Container Weight: 109.2 lbs

Fullness Fraction: Full

Waste Addition Log Attached to Container: N/A

Instrument

- Make: L-alpha
- Model: 3
- Serial: 285867
- Cal due: 6/24
- BKG: 50-60
- Unit: cpm

Instrument

- Make: L-alpha
- Model: 19
- Serial: 250437
- Cal due: Aug 24
- BKG: 6-10
- Unit: cpm

Instrument

- Make:
- Model:
- Serial:
- Cal due:
- BKG:
- Unit:

Action Levels:

- α: 720 dpm/300cm²
- β/γ: 7200 dpm/300cm²

For Reviewer:

Are survey results > Action Level [x] \[x\]

Are Results > MDA [x]
RPR-11f Waste Survey Form

On contact Dose Rate (mSv/min)

- 1m to indicate a Dose Rate at 1 m (mSv/min)

- **Large Area Wipe**

- **Swipe**
The formula used in ADR calculation applies to an unpaired sample analysis and was obtained from the NUREG 1400 - Equation 6.3.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Measured Count</th>
<th>Sample Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DPM</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Count Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>134</td>
<td>148</td>
<td>162</td>
<td>176</td>
<td>190</td>
<td>204</td>
<td>218</td>
<td>232</td>
<td>246</td>
<td>260</td>
<td>274</td>
<td>288</td>
</tr>
</tbody>
</table>

Background Count Time: 04/25/2024

Ludum 3000

Procedure #: RS-03 Rev.2
Procedure Title: Radiological Surveys
Approval Date: 04/25/2024
Effective Date: 05/31/2024