Instructions for Conducting a General Job Hazard Analysis

How do I start?

1. **Involve employees.**
 - Discuss what you are going to do and why
 - Explain that you are studying the task, not employee performance
 - Involve the employees in the entire process

2. **Review your organization’s accident/injury/illness/near miss history to determine which jobs pose the highest risk to employees and to others.** Also consider the potential for excessive business disruption or costly repairs.

3. **Identify the Idaho General Safety and Health Standards** (https://dbs.idaho.gov/rules/safety_code/) that apply to your jobs. Incorporate their requirements into your JHA.

4. **Set priorities.**
 - Consider priority for:
 - Jobs with the highest injury or illness rates;
 - Jobs where there have been "close calls" - where an incident occurred but no one got hurt;
 - Jobs where you have identified violations of Safety and Health standards;
 - Jobs with the potential to cause serious injuries or illness, even if there is no history of such problems;
 - Jobs in which one simple human mistake could lead to severe injury;
 - Jobs that are new to your operation of have been changed; and
 - Jobs complex enough to require written instructions.

The process ...,,

1. **Document each type of industrial, facilities or laboratory work**
 - Based on knowledge of the job, list the types of work performed

EXAMPLE:

<table>
<thead>
<tr>
<th>TASK</th>
<th>HAZARDS</th>
<th>RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Electrical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Material Handling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Mechanical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Identify the hazards of each work category. For each work category ask:

- What can go wrong?
- What are the consequences?
- How could it happen?
- What are other contributing factors?
- How likely is it that the hazard will occur?

A Risk Level Matrix such as shown below can be used to aid in estimating risk event as “High,” “Medium” or “Low” risk. The Risk Level Matrix is a risk ranking tool/table that is used to estimate the likelihood of a risk event occurring and the impact or consequence of the event, should it occur. Awareness of risk level is used to prioritize focus on high and medium risks.

3. Review the list of hazards with employees who do the job. Discuss what could eliminate or reduce them to a lower risk level.

4. Identify ways/controls to eliminate or reduce the hazards.

- Safer way to do the job
- Changes in equipment

 Equipment changes, or engineering controls, are the first choice because they can eliminate or separate the hazard from the worker

- E.g. machine guards, improved lighting, better ventilation
• Changes in work processes

• Administrative controls, or changes in how the task is done, can be used if engineering controls aren't possible

• E.g. rotating jobs, changing the steps, training

• Changes in personal protective equipment

• When engineering and administrative controls aren't possible or don't adequately protect the workers, use personal protective equipment

• E.g. gloves, hearing protection

Engineering Controls (EC) include:

• Ventilation
• Guards
• Barriers
• Interlocks
• Design or retrofitting to reduce risk

Administrative Controls (AC) include:

• Training (HAZCOM (TH), Confined Space (TCS), Lockout/Tagout (TLO), Fall Protection (TF), Asbestos awareness (TA), Lead Awareness (TL), Respiratory Protection (TR), General Safety (TG), Welding Safety (TW), Asbestos Worker (TAW), Low Back Injury Prevention (TLB), Other specific safety training (TS).
• Procedures (AP).
• Signs (AS).
• Alarms (AA).
• Work schedule limitations (ASL), for example ASL-4 for limit to four hours.
• Two-person rule (ATP)

Personal Protective Clothing and Equipment (PPE)

• Footwear: Electrical Hazard (F-EH) Hard Toe (F-HT).
• Hardhat (PH)
• Bump Cap (PB)
• Glove, Chemical Resistant (PGC), material handling (PGM), Cut Resistant (PGC), Gloves, Electrical Hazard (PGE), welding (GW)
• Safety Harness, with lanyard (PH)
• Safety Glasses (SG)
Safety Measures include Engineering Controls (EC), Administrative Controls, and Personal Protective Clothing and Equipment (PPE).

EXAMPLE

<table>
<thead>
<tr>
<th>TASK</th>
<th>HAZARDS</th>
<th>Safety Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Electrical</td>
<td>Electrical injury</td>
<td>Non-conductive footwear, 100% cotton work shirts, safety glasses, electrician's gloves, Hazardous Energy Control Training. HAZCOM Training.</td>
</tr>
<tr>
<td>2. Material Handling</td>
<td>Falling object, ergonomic strain</td>
<td>Hard toed (non-metal) footwear Low-Back Protection Training</td>
</tr>
<tr>
<td>3. Mechanical</td>
<td>Pinch point, impact injury</td>
<td>Protective gloves, Hard toed (non-metal) footwear</td>
</tr>
</tbody>
</table>

EXAMPLE – Using Codes

<table>
<thead>
<tr>
<th>TASK</th>
<th>HAZARDS</th>
<th>Safety Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Electrical</td>
<td>Electrical injury</td>
<td>F-EH, WSC, SG, GE, TLO</td>
</tr>
<tr>
<td>2. Material Handling</td>
<td>Falling object, ergonomic strain</td>
<td>F-HT, TLB, TH, PGM</td>
</tr>
<tr>
<td>3. Mechanical</td>
<td>Pinch point, impact injury</td>
<td>PGC, F-HT</td>
</tr>
</tbody>
</table>

What do I do next?

1. **Safety Measures Implementation**
 - Inform all employees who do the job on the changes
 - Implement engineering controls
 - Implement administrative controls, including training
 - Provide for the needed PPE
2. **Review the JHAs.**
 - Periodically - you may find hazards you missed before
 - When the task or process is changed
 - When injuries or close calls occur when doing the task

3. **Use the JHAs.**
 - Training
 - Planning for changes
 - Close-call review/Accident investigation