In presenting this thesis in partial fulfillment of the requirements for an advanced degree at Idaho State University, I agree that the Library shall make it freely available for inspection. I further state that permission for extensive copying of my thesis for scholarly purposes may be granted by the Dean of the Graduate School, Dean of my academic division, or by the University Librarian. It is understood that any copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Signature _________________________________

Date_____________________________________
Extracellular Proteins from A Novel Serratia Isolate

Capable Of Killing Phytophthora erythroseptica

By

Brittany A. Mangum

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in the Department of Biological Sciences

Idaho State University

May 2023
To the Graduate Faculty:

The members of the committee appointed to examine the thesis of Brittany Mangum find it satisfactory and recommend that it be accepted.

__
Dr. Peter Sheridan
Major Advisor

__
Dr. Kristin Lane
Committee Member

__
Dr. Rachel Hulse
Graduate Faculty Representative
Acknowledgements

This project would not have been feasible without the support of many people. Thanks are due to my adviser, Dr. Peter Sheridan, who provided guidance and support throughout my research project and helped revising this document. Boise State University who provided protein sequencing via tandem mass spectrometry. To my family and friends, thank you for your support and encouragement. Lastly, to the Department of Biological Sciences at Idaho State University for providing a Teaching Assistant scholarship.
Table of Contents

List of Figures .. vi

List of Tables .. ix

List of Abbreviations ... xi

Thesis Abstract.. xiii

Chapter 1: Literature Review... 1

Phytophthora ... 1

True Fungus vs Oomycete? ... 1

Genus ... 2

Reproduction ... 8

Pathogenicity .. 15

Phytophthora infestans ... 22

Phytophthora erythroseptica .. 29

Serratia plymuthica .. 46

Origin ... 46

Organism characteristics ... 46

Economic Importance .. 51

Proteomics ... 57

Serratia plymuthica Proteome ... 57

Techniques ... 68

Liquid Chromatography-Mass Spectrometry ... 68

Transformations .. 71

Chapter II: Cloning of Bioactive Peptides from a Novel *Serratia plymuthica* isolate 76
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>76</td>
</tr>
<tr>
<td>Material and Methods</td>
<td>81</td>
</tr>
<tr>
<td>Spent media</td>
<td>81</td>
</tr>
<tr>
<td>Filtration and Concentration</td>
<td>82</td>
</tr>
<tr>
<td>PAGE</td>
<td>82</td>
</tr>
<tr>
<td>Bradford Method</td>
<td>83</td>
</tr>
<tr>
<td>LC-MS</td>
<td>84</td>
</tr>
<tr>
<td>Primer Design</td>
<td>84</td>
</tr>
<tr>
<td>Genomic DNA Extraction</td>
<td>85</td>
</tr>
<tr>
<td>Polymerase Chain Reaction (PCR)</td>
<td>85</td>
</tr>
<tr>
<td>Amplicon Purification</td>
<td>86</td>
</tr>
<tr>
<td>Cloning</td>
<td>87</td>
</tr>
<tr>
<td>pBAD TOPO TA</td>
<td>87</td>
</tr>
<tr>
<td>pUC18</td>
<td>90</td>
</tr>
<tr>
<td>aLICactor</td>
<td>95</td>
</tr>
<tr>
<td>Expression Experiments</td>
<td>104</td>
</tr>
<tr>
<td>Media/Solutions</td>
<td>105</td>
</tr>
<tr>
<td>Results</td>
<td>108</td>
</tr>
<tr>
<td>Discussion</td>
<td>137</td>
</tr>
<tr>
<td>Chapter III: Future Directions</td>
<td>141</td>
</tr>
<tr>
<td>References</td>
<td>142</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1: *Phytophthora* Clades ... 5

Figure 2: Zoosporangia Papillate. .. 6

Figure 3: Amphigynous Versus Paragynous Antheridium Attachment to Oogonium 6

Figure 4: Sexual and Asexual Reproduction of *Phytophthora* ... 9

Figure 5: Free Sporangium Carried by Wind or Water Directly Inoculates Plant Tissue 11

Figure 6: Sporangium Differentiation .. 13

Figure 7: Asexual Reproduction and Haustorium Formation ... 14

Figure 8: Haustoria Structure .. 15

Figure 9: Salicylic Acid Response to Activation of Defense Genes .. 19

Figure 10: Jasmonic Acid Pathway ... 20

Figure 11: Foliage Infected with Late Blight .. 25

Figure 12: Tuber Infected with *P. infestans* .. 26

Figure 13: *Phytophthora erythroseptica* Life Cycle .. 32

Figure 14: Potato Plant Structure .. 36

Figure 15: Pink Rot of Tuber ... 36

Figure 16: Common Fungicides Used to Control *P. erythroseptica* .. 38

Figure 17: Morphology of Wild-type and Fluopicolide-Resistant Mutant of *P. erythroseptica* . 42

Figure 18: Appearance of Infected Tubers .. 45

Figure 19: Prodigiosin Structure .. 49

Figure 20: Cucumber Roots Treated with *S. plymuthica* with no Exposure to *P. ultimum* 56

Figure 21: Cucumber Roots Treated with *S. plymuthica* and Inoculated with *P. ultimum* 57

Figure 22: Structure of Gram-negative Cell Membrane .. 60
Figure 23: Structure of the N-terminal Domain of OmpA ... 61
Figure 24: Structure of OmpA .. 62
Figure 25: Hemolysin Found in Serratia Species ... 67
Figure 26: Arrangement of Mass Spectrometry ... 69
Figure 27: Liquid Chromatography Coupled to Mass Spectrometry .. 71
Figure 28: Bacterial Cell Competency via Chemical Transformation and Electroporation 72
Figure 29: Chemical Competency ... 74
Figure 30: B. dendrobatidis on TGHl (Tryptone, Gelatin Hydrolysate, and Lactose) Plates
Challenged with Different Bacterial Isolates Isolated from GTNP .. 78
Figure 31: P. erythroseptica Challenged Against Top 8 Bacterial Isolates Obtained from GTNP in Wyoming .. 80
Figure 32: pBAD TOPO TA Cloning Reaction... 88
Figure 33: pLATE Vector Design .. 97
Figure 34: Sequencing of pLATE 11 Vector .. 101
Figure 35: Sequencing of pLATE31 Vector .. 102
Figure 36: Sequencing of pLATE52 Vector .. 103
Figure 37: Isolate 72 Samples Ran on PAGE and RSS ... 108
Figure 38: Plasmid DNA Extracted from Hemolysin 1 C-Terminus Histidine and Hemolysin 2
N-Terminus Histidine Tag ... 131
Figure 39: Plasmid DNA Extracted from Hemolysin 1 C-Terminus Histidine Tag and Hemolysin
1 N-Terminus Histidine Tag .. 132
Figure 40: OmpA protein Expression from 5 mL Culture ... 134
Figure 41: OmpA protein Expression from 50 mL Culture ... 135
Figure 42: OmpA Fractions Collected via a Nickel Column... 136
List of Tables

Table 1: Late Blight Treatment ... 29
Table 2: Characteristics of *S. plymuthica* .. 48
Table 3: Compounds Produced by Microorganisms Within the *Serratia* Genus 50
Table 4: An Isolate of *S. plymuthica* Produced 851 Proteins. .. 59
Table 5: Regulation of OmpA Expression in *Escherichia coli* .. 63
Table 6: List of Inhibitory Bacterial Isolates Against *B. dendrobatidis* Identified Using the 16S rRNA Gene Sequence ... 77
Table 7: Top 8 of the 14 Isolates Exhibiting Inhibition Against *P. erythroseptica* 79
Table 8: *P. erythroseptica* Challenged Against Untreated Spent Media of Isolate 72, 23, and 56. ... 81
Table 9: Master Mix Reagents and Volumes .. 86
Table 10: Adding 3' deoxyadenosine Overhangs Post-Amplification .. 87
Table 11: TOPO TA Cloning Reaction Mixture .. 88
Table 12: pUC18 Digest ... 91
Table 13: Optimize T4 DNA Ligase Protocol .. 92
Table 14: pUC18 Sequencing Primers .. 95
Table 15: Elements of pLATE Cloning Vector and Function .. 98
Table 16: Reaction Mixture Used to Generate 5' and 3' Overhangs ... 99
Table 17: Vectors Corresponding to Each PCR Product .. 99
Table 18: LIC Sequencing Primers ... 100
Table 19: Sample 1 Protein Data Obtained from Boise State University via LC-MS (Part 1) ... 111
Table 20: Sample 2 protein Data Obtained from Boise State University via LC-MS (Part 1) ... 113
Table 21: Forward and Reverse Complement Primers for OmpA, Extracellular Serine Protease, Hemolysin 1, and Hemolysin 2... 122
Table 22: Primers Used for pBAD TOPO TA Cloning System... 123
Table 23: Primer Combinations for pBAD TOPO TA Cloning System 124
Table 24: Primers Used for pUC18 Cloning... 124
Table 25: Primer Combinations for pUC18 Cloning System.. 124
Table 26: Primers used for aLICator Cloning System.. 125
Table 27: Primer Combinations for aLICator Cloning System ... 126
Table 28: Transformation of pUC18 Using Zymo Kit ... 127
Table 29: pUC18 Transformations on LAX and LAXI... 127
Table 30: OmpA Transformations Utilizing Zymo Kit and TransformAid Kit with XL1-Blue Competent Cells... 128
Table 31: OmpA Transformations Utilizing Zymo Kit and TransformAid kit with BL21 (DE3) Competent Cells... 129
Table 32: Hemolysin 1 and Hemolysin 2 Transformations Utilizing TransformAid Bacterial Transformation Kit with XL1-Blue Competent Cells .. 130
Table 33: Hemolysin 1 Transformations Utilizing TransformAid Kit with XL1-Blue Competent Cells .. 132
Table 34: Hemolysin 1 and Hemolysin 2 Transformations Utilizing TransformAid Bacterial Transformation Kit with BL21 (DE3) Competent Cells... 133
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Aggressiveness Index</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony Forming Unit</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl Sulfoxide</td>
</tr>
<tr>
<td>EC</td>
<td>Effective Concentration</td>
</tr>
<tr>
<td>EHM</td>
<td>Extrahaustorial Membrane</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray Ionization</td>
</tr>
<tr>
<td>ESP</td>
<td>Extracellular Serine Protease</td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>HEMO</td>
<td>Hemolysin</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl ß-D-1-thiogalactopyranoside</td>
</tr>
<tr>
<td>ITS</td>
<td>Internal Transcribed Spacers</td>
</tr>
<tr>
<td>LAX</td>
<td>LB + Ampicillin + X-gal</td>
</tr>
<tr>
<td>LAXI</td>
<td>LB + Ampicillin + X-gal + IPTG</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>LC</td>
<td>Liquid Chromatography</td>
</tr>
<tr>
<td>LIC</td>
<td>Ligation Independent Cloning</td>
</tr>
<tr>
<td>MAMP</td>
<td>Microbe Associated Molecular Patterns</td>
</tr>
<tr>
<td>MCS</td>
<td>Multiple Cloning Sites</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibition Concentration</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectroscopy</td>
</tr>
<tr>
<td>NLS</td>
<td>Nuclear Localization Signal</td>
</tr>
<tr>
<td>NRE</td>
<td>Non-Rhizobia Endophytic</td>
</tr>
<tr>
<td>OmpA</td>
<td>Outer membrane Protein A</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>PAMP</td>
<td>Pathogen Associated Molecular Patterns</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato Dextrose Agar</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene Glycol</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfonyl Fluoride</td>
</tr>
<tr>
<td>PRR</td>
<td>Pattern Recognition Receptors</td>
</tr>
<tr>
<td>PSM</td>
<td>Peptide Spectrum Match</td>
</tr>
<tr>
<td>RSS</td>
<td>Rapid Silver Stain</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>TIC</td>
<td>Total Inhibition Concentration</td>
</tr>
<tr>
<td>TOF</td>
<td>Time-of-flight</td>
</tr>
<tr>
<td>TSB</td>
<td>Tryptic Soy Broth</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-Bromo-4-Chloro-3-Indolyl β-D-Galactopyranoside</td>
</tr>
<tr>
<td>ZE</td>
<td>Zoospore Exudate</td>
</tr>
</tbody>
</table>
Extracellular Proteins from A Novel *Serratia* Isolate Capable of Killing *Phytophthora erythroseptica*

Thesis Abstract-Idaho State University (2023)

A novel strain of the organism *Serratia plymuthica* has shown inhibitory effects against *Phytophthora erythroseptica*. *P. erythroseptica* is a chytrid fungus known to cause wilt and pink rot in tubers. We have identified four virulence factors (outer membrane protein A (OmpA), extracellular serine protease (ESP), hemolysin 1, and hemolysin 2 from the spent media of the isolate which may account for the inhibition. The spent medium was sent to Boise State University for proteomic sequencing. Utilizing bioinformatic methods to identify the proteins detected and their underlying gene sequence of a closely related genome, we designed PCR primers to amplify the top candidate genes. Utilizing various cloning systems (pBAD TOPO TA, pUC18, and aLICator), we were able to identify the correct vector-host combination that enabled us to clone three of the four gene targets. Additionally, we have transformed recombinant plasmid DNA into an expression host and preliminary expression experiments have been conducted.

Keywords: cloning, inhibition, OmpA, *Phytophthora*, *Serratia*
Chapter I: Literature Review

Phytophthora

True Fungus vs Oomycete?

The genus *Phytophthora* contains eukaryotic microorganisms within the kingdom *Straminiphila, Oomycota phylum, and Oomycetes class*. Over 150 *Phytophthora* species have been categorized, 60% of species being plant pathogens. For example, *Phytophthora infestans* infects potatoes and tomatoes causing late blight, *Phytophthora erythroseptica* cause pink rot, and *Phytophthora ramorum* causes sudden oak death (Wang & Jiao, 2019; Yang et al., 2017). Oomycetes were once considered to be true fungi due similar phenotypes, morphological features such as the presence of mycelia and spores, mode of nutrition, and environmental niches. However, there are several major distinctions which differentiate oomycetes from true fungi (Klinter et al., 2019). Traditionally oomycetes were informally grouped together as “lower fungi” including slime molds, chytrids, zygomycetes, and arbuscular mycorrhizae. True fungi or “higher fungi” includes ascomycetes (sac fungi) and basidiomycetes (club fungi) (Rossman & Palm-Hernández, 2006).

True fungi cell walls contain chitin, a polymer of β-1,4 linked N-acetylglucosamine responsible for maintaining the mechanical strength of the cell wall. Cell walls of oomycetes are composed of cellulose β-1,3 linked and β-1,6 linked glucan. Oomycetes can be further divided into two taxonomic sister groups Peronosporomyctes, mainly plant pathogens such as *Phytophthora*, and Saprolegniomyctes, saprophytes. Saprolegniomyctes may contain varying amounts of β-1,4 linked N-acetylglucosamine in their cell wall, but Peronosporomyctes do not (Klinter et al., 2019).
Using microscopy hyphae and mitochondria from oomycetes and true fungi can be visualized. Hyphae are fine branching filaments enabling both organisms to absorb nutrients and reproduce. True fungi, except Zygomycota, the mycelium is divided by cross-walls or septations that contain cells with haploid (1n) nuclei. Oomycetes hyphae are known as coenocytic due to the lack of cross-walls. Oomycetes cells contain diploid (2n) nuclei. Zygomycota, a true fungus, lacks septation however, hyphae contain haploid (1n) nuclei. In the 1970s, transmission electron microscopy (TEM) revealed mitochondrial cristae present in both oomycetes and true fungi. Cristae occur when the inner membrane of the mitochondrion folds inward. Most of the electron transport chain complexes and ATP synthase dimers are found in mitochondrial cristae. Therefore, the more cristae, the more energy that can be produced (Glancy et al., 2020). Oomycete’s mitochondria contain tubular or fingerlike cristae, while true fungal mitochondria have flattened or sheetlike cristae (Rossman & Palm-Hernández, 2006).

Phylogenetic analysis has revealed oomycetes are more closely related to heterokont algae than true fungi. Heterokont algae include brown algae (Phaeophyta), yellow-green algae (Xanthophyta), golden algae (Chrysophyta), and diatoms (Bacillariophyta). Similar to oomycetes, heterokont algae have tubular mitochondrial cristae and two types of flagella. Oomycetes’ zoospores possess two types of flagella. The first type of flagellum is located posteriorly and moves in a whiplike fashion while the second type of flagella is positioned anteriorly. A true fungus, Chytridiomycota, produces zoospores with only the posterior flagellum, differentiating it from oomycetes (Rossman & Palm-Hernández, 2006).

Genus

Prior to DNA based identification methods, *Phytophthora* species were characterized and divided into six groups based on three sporangium types, 2 antheridium types, host range,
sporangium morphology, presence or absence of chlamydomospores, hyphal swellings, optimal
growth temperature, colony morphology, and oogonium morphology. The classification system
was devised by Waterhouse, a British mycologist, in the 1920s and later revised. Classification
of species within the genus *Phytophthora* using the above criteria required an expert mycologist
to differentiate new species. To aid in further differentiation mycologists were able to analyze
physiological characteristics such as resistance to malachite green. The advancement in
molecular technology has enable researchers to construct molecular genetic linkage maps, track
clonal lineages within populations, and construct phylogenic maps. When DNA regions and
genes from dozens of species are characterized, a phylogeny can be constructed, and species can
be grouped into clades (Kroon et al., 2012).

Phylogenies were constructed based on DNA sequences of the 5.8S ribosomal RNA gene
and flanking internal transcribed spacers (ITS1 and ITS2). The ITS’s were ideal targets for
polymerase chain reaction (PCR) amplification due to the highly conserved regions. However,
within the scientific community there was doubt that the ITS regions could differentiate closely
related species. Phylogenetic resolution has been greatly enhanced by targeting “housekeeping”
genes such as mitochondrial genes, nuclear genes, and proteins with known metabolic functions.
Similar as the ITS genes, housekeeping genes have highly conserved regions ideal for universal
primers, however, nucleotide variation is enhanced within given regions (Kroon et al., 2012).

Within the *Phytophthora* genus, ten clades have been categorized (Figure 1). Organisms
within the ten clades are differentiated based on host, host tissue infected, sex (heterothallic or
homothallic), type of zoospororangia (papillate, semipapillate, or nonpapillate), and either
amphigynous or paragynous attachment to antheridia (Kroon et al., 2012). *Phytophthora* species
can affect plant foliage (leaves), roots, or both. For instance, *P. infestans* is known to infect plant
foliage, *P. erythroseptica* is a soil-borne pathogen and infects plant roots, and *P. nicotianae* infects both roots and foliage (Kroon et al., 2012). *Phytophthora* species can reproduce sexually by either heterothallic or homothallic conditions. Heterothallic species are of a single mating type and depend on a compatible mating partner to reproduce sexually. Homothallic species produce both the male and female mating types for sexual reproduction. *Phytophthora* species can also be differentiated based on zoospore release. Zoospores can be released from the sporangia via exit pores that are well developed (papillate) or underdeveloped and appear nipple like (semi-papillate; Figure 2). During sexual reproduction the antheridium can attach to the oogonium either by paragynous or amphigynous attachment. Paragynous attachment is when the antheridium attaches to the side of the oogonium, while amphigynous pertains to the antheridium surrounding the oogonium (Figure 3; Glossary, 2023).
References

Collingwood, A. M. (2013). Inhibition of growth of Phytophthora erythroseptica by extracellular compounds produced by gamma proteobacteria.

https://doi-org.libpublic3.library.isu.edu/10.1126/science.1171652

Park S.T, Collingwood A.M, St-Hilaire S, Sheridan P.P. Inhibition of Batrachochytrium dendrobatidis Caused by Bacteria Isolated from the Skin of Boreal Toads, Anaxyrus (Bufo) boreas boreas, from Grand Teton National Park, Wyoming, USA. Microbiol

https://www.canr.msu.edu/resources/potato_diseases_pink_rot_e2993

https://doi-org.libpublic3.library.isu.edu/10.1111/j.1365-3059.2012.02685.x