
Session 1
After installation MATLAB:

1) In the home page, Environment section, click on Layout icon.

2) Click on Command history and select Docked to become add to the windows.

1

2
3

The MATLAB Work Environment:

• What “MATLAB” stands for?

Matrix Laboratory: a programming environment built to handle matrices (arrays) and their arithmetic

operations easily.

• What a MATLAB variable is: a named container for storing data.

• What types? Real (numeric) data, and less often, string data.

Fundamental MATLAB Classes for Data:

1) Numeric Types

Floating-Point Numbers: x = 325.499, y= -12.06, z=0.001

Integers: a = 3, c = 38, j = -11

2) Characters and Strings

Character arrays: A character array is a sequence of characters, just as a numeric array is a sequence of

numbers. A typical use is to store short pieces of text as character vectors, such as c = 'Hello World'.

String arrays: A string array is a container for pieces of text. String arrays provide a set of functions for

working with text as data. Starting in R2017a, you can create strings using double quotes, such as str =

"Greetings friend". To convert data to string arrays, use the string function.

Current Directory

Contents!

Some of the File

Details!

List of the New

Variables After

Defining by User

will be Added

Here!

History of All

Typing Codes

and Commands

by User Will be

Appeared Here!

Place for Type the Commands and Codes!

Current

Working

Directory!

Toolstrip

https://www.mathworks.com/help/matlab/characters-and-strings.html
https://www.mathworks.com/help/matlab/ref/string.html

Variable (and script file) naming rules:

1. names must begin with an “alpha” character: a—z or A—Z

2. subsequent char’s can be “alpha-numeric” or underscore; a—z, A—Z, or _

3. Must avoid keywords: end, while, if, for, return, else, function, ..., etc. These show up in the

command window or editor as blue.

4. Suggested: avoid names or pre-defined MATLAB functions or constants: sin, cos, pi,, etc.

How to assign variables in the command window (or within script files):

Example:

A = 42;

In this example:

• The “=” sign: “A gets the value 42”, as opposed to “A equals 42”.

• The terminating “; “: suppress the output of the operation.

Script files:

How to open it:

One of these two ways

• Comments within a script file: they begin with %...stuff for the user to read.....

and continue to the end of the line. MATLAB ignores the material following %.....

How to save it:

Codes
Comments

1

2

3

Note: In this course save the files in

format of your: Firstname_Lastname.m

disp

How to execute it:

disp

Session 2
List of Index: MATLAB Commands (Make sure never use any of them for assigning a variable!)

Arrays: Containers with multiple elements

Matrix: Matrices (m x n) arrays of values

𝒙 = [

𝒂𝟏𝟏 ⋯ 𝒂𝟏𝒏
⋮ ⋱ ⋮

𝒂𝒎𝟏 ⋯ 𝒂𝒎𝒏

]

𝒎×𝒏

 𝑨 = [
𝟏 𝟐 𝟑
𝟒 𝟓 𝟔

]
𝟐×𝟑

Row Vectors: Row vectors (1 x n) arrays of values

B = [𝟏 𝟒 𝟗]𝟏×𝟑

• We can use comma or space between the numbers for making a row vector.

Column Vectors: Column vectors (m x 1) arrays of values

𝑪 = [

𝟔
𝟒
𝟗
𝟑

]

𝟒×𝟏

• We must use semicolon (;) between the numbers for making a column vector.

• Using semicolon (;) after any comment to avoid showing the result after running that line.

• Changing a column vector to row vector or reverse with using apostrophe (‘)

Indexing: if a variable is a vector, just one index is needed. If a variable is a matrix, then the convention

is (row index, column index), consistent with linear algebra.

MATALB’s array creation operators and functions:

x = a: incr : b; % create a row vector running from a to b with increment = incr

x = a: b; % create a row vector from a to b, but with default increment 1

x = linspace (a, b, N); % create a row vector from a to b, with N equally spaced points

x = linspace (a, b); % create a row vector from a to b, with 100 equally spaced points

A = [1 2 3; 3 4 5; 6 7 42]; % create an array by hand, typing in the elements row by row, with ;

denoting “go to the next row”.

Session 3

MATLAB’s special structure array functions:

eye (n, m):

eye (n):

zeros (n, m):

zeros (n):

ones (n, m):

ones (n):

rand (n, m): creates uniform random numbers ("with replacement") in the range (0,1) exclusive.

rand (n):

randn (n, m): creates normally distributed random numbers.

randn (n):

randi (imax, n): Uniformly distributed pseudorandom integers

randi (imax, n, m):

diag (A):

tril (A): Lower triangular part of matrix

L = tril(A) returns the lower triangular portion of matrix A.

L = tril(A,k) returns the elements on and below the kth diagonal of A.

Specific matrix array:

https://www.mathworks.com/help/matlab/ref/tril.html#d122e1356660
https://www.mathworks.com/help/matlab/ref/tril.html#mw_7ba2773e-9fd4-4e40-9b1e-041519966bd3
https://www.mathworks.com/help/matlab/ref/tril.html#d122e1356660
https://www.mathworks.com/help/matlab/ref/tril.html#d122e1356712

Concatenating Matrices:

Expanding a Matrix:

Session 4

Math operators:

Elementwise array operations (vectorized) on arrays: The arithmetic operators are +, -, *, /, and ^, and

their usage is consistent with linear algebra. They perform component wise operations in the case of +, -

and (when used with an array and scalar) * and / With arrays, * and ^ are reserved for the linear algebra

meaning (i.e., compatible matrix multiplication). If you want component wise operations, we need the

“dot” operators: .*, ./, .^, for component-wise multiplication, division, and exponentiation. All MATLAB

math functions are “vectorized”.

Example:

* :

^ :

.^ :

+, -

/, \

./ :

.* :

Order of priority of math operators in an equation:

() > ^ > *, / > +, -

MATLAB relational operators:

MATLAB help function: help name of function

Example:

plot:

Clear Command Window
Clear your workspace
Closes All Figures

help plot

help mean

help sum

.

.

.

https://www.mathworks.com/help/matlab/ref/help.html#d122e544919

Label the plots:

Use the '^' and '_' characters to include superscripts and subscripts in the axis labels. Use curly

braces {} to modify more than one character.

Session 5

subplot: subplot Create axes in tiled positions. H = subplot(m,n,p), or subplot(mnp), breaks the Figure

window into an m-by-n matrix of small axes, selects the p-th axes for the current plot, and returns the

axes handle. The axes are counted along the top row of the Figure window, then the second row, etc.

hold on / hold off: Sometimes a plot needs to be amended, keeping currently displayed material on the

plot. For this case we can use “hold on” and “hold off”!

Example 1: Create a line plot. Use hold on to add a second line plot without deleting the existing line

plot. The new plot uses the next color and line style based on the ColorOrder & LineStyleOrder properties

of the axes. Then reset the hold state to off.

When the hold state is off, new plots delete existing plots. New plots start from the beginning of the color

order and line style order.

tiledlayout: you can display a tiling of plots using the tiledlayout and nexttile functions. Call

the tiledlayout function to create a 2-by-1 tiled chart layout. Call the nexttile function to create the axes

objects ax1 and ax2. Plot a sin & cos wave plot in each axis.

We can add a second graph to any of these axes with using hold on/ hold off command.

Session 6

input:

Example 1: Receive length and width of a rectangle from user and calculate the area.

Example 2: Receive three inputs for grade of a student in midterm #1, midterm #2, and final exam. After

that calculate the final grade for him/her in following way: %20 for the 1st midterm, %30 for 2nd midterm

and %50 for final exam!

• str = input (prompt, 's') returns the entered text, without evaluating the input as an expression.

disp: Display value of variable. disp(X) displays the value of variable X without printing the variable

name. Another way to display a variable is to type its name, which displays a leading “X =” before the

value.

Example 1:

rectangle

rectangle

2nd

https://www.mathworks.com/help/matlab/ref/input.html#btt5u2a-str
https://www.mathworks.com/help/matlab/ref/input.html#btt5u2a-prompt
https://www.mathworks.com/help/matlab/ref/disp.html#btnow0n-1-X

Example 2:

Boolean expressions: True or false (Boolean) conditions

The logical data type represents true or false states using the numbers 1 and 0, respectively. Certain

MATLAB® functions and operators return logical values to indicate fulfillment of a condition. You can

use those logical values to index into an array or execute conditional code.

if, else, elseif:

In this section we will explain the “single-sided if”, the “two-sided if (if-else)”, and the “cascaded if (if-

elseif-else)” structures. All of these are using for the first “programming structures” to allow

nonsequential code.

B will be assigned new value.
B & the expression in front of it will be

checked if is a correct assumption or not!

Single-sided if:

Two-sided if (if-else):

An expression can include relational operators (such as < or ==) and logical operators (such as &&, ||,

or ~). Use the logical operators and and or to create compound expressions. Within the conditional

expression of an if...end block, logical operators & and | behave as short-circuit operators. This behavior

is the same as && and ||, respectively. Since && and || consistently short-circuit in conditional

expressions and statements, it is good practice to use && and || instead of & and | within the expression.

Answer:

Answer:

cascaded if (if-elseif-else):

and: it means both conditions must satisfy!

or: it means if any of these two conditions be

satisfied, that would be a correct assumption!

Answer:

error: Throw error and display message, error (msg).

• If any error happened and you want to stop running program you can use (Ctrl+c)!

Answer:

https://www.mathworks.com/help/matlab/ref/error.html#d122e350135

Session 7

switch, case, otherwise: Execute one of several groups of statements.

Example 1: write a code to show different text conditionally, depending on a value entered at the

command prompt.

Results:

Example 2: write a code to show we are in which part of the day based on the time.

Results:

while loop: while loop to repeat when condition is true.

Example 1: write a code to calculate the factorial for different numbers.

Example 2: write a code to calculate the maximum number of people can using an elevator at the same

time with a capacity of 800 lbs.

Results:

Example 3: Sum a sequence of random numbers until the next random number is greater than an upper

limit. Then, exit the loop using a break statement.

Results:

Results:

Session 8

for: for loop to repeat specified number of times.

Example 1: write a code to create a Hilbert matrix of order 10.

Results:

for index = values

 statements

end

Hilbert matrix:

Rational fraction format

Example 2: Step by increments of -0.2 and display the values.

Example 3: Execute statements for specified values

Results:

Results:

Note: A “for” loop can usually be avoided in MATLAB programming: if the computation being done can

be vectorized, no need for the loop. Only when current computation depends on previously computed

values does a for loop need to be used. If an array of results is being computed, make sure the array’s

memory is “pre-allocated”, e.g., A = zeros(N,1) like the first example.

pause: We can use it in different form for temporarily stops MATLAB execution.

pause: temporarily stops MATLAB execution and waits for the user to press any key.

pause(n): pauses execution for n seconds before continuing. Pausing must be enabled for this call to take

effect.

Example 1: pause until user want with press any keys then display another function in final graph

After press any key

https://www.mathworks.com/help/matlab/ref/pause.html#d122e942168
https://www.mathworks.com/help/matlab/ref/pause.html#d122e942194

Example 2: pause for 15 sec and then display another function in final graph

Reading data from files and saving data to files: A) the binary .mat versions of load and save B) the

ascii versions.

• MATLAB code is in files with extension .M.

• MATLAB data is in files with extension .MAT.

After 15 sec

Thus, you can't always convert .M files to .MAT, but if your MATLAB code just contains variable

assignments, then you can convert it.

Data are stored in workspace temporary and if we use “clear” all of them will be erased. Thus, it would be

better to store them in a file for future.

For creating a .MAT file or update it and add some new variables to it, we can use “save file-name” like

the following example. In this way you can save all variables from the workspace in a binary MAT-file.

Example:

For call and reading the file, we can use “load file-name” like the following example.

If we want to just save some specific variables to MAT-file NOT all variables in workspace, we can use

following method.

For adding more new variables to a saved file, we can use save (‘filename’, ‘variables’, '-append') line
of code.

Also, we can save the Data to ASCII File (text format).

If you specify a text format and any variable is a two-dimensional character array, then MATLAB translates

characters to their corresponding internal ASCII codes. For example, 'abc' appears in a text file as:

9.7000000e+001 9.8000000e+001 9.9000000e+001

Session 9

fprintf: Write data to text file.

Syntax:

fprintf(fileID,formatSpec,A1,...,An)

fprintf(formatSpec,A1,...,An)

Example 1: Print multiple numeric values and literal text to the screen.

• %4.2f in the formatSpec input specifies that the first value in each line of output is a floating-point

number with a field width of four digits, including two digits after the decimal point. %8.3f in

the formatSpec input specifies that the second value in each line of output is a floating-point number

with a field width of eight digits, including three digits after the decimal point. \n is a control character

that starts a new line.

Example 2: Explicitly convert double-precision values with fractions to integer values.

• single precision: log10(224), which is about 7~8 decimal digits
• double precision: log10(253), which is about 15~16 decimal digits

https://www.mathworks.com/help/matlab/ref/fprintf.html#d122e419897
https://www.mathworks.com/help/matlab/ref/fprintf.html#d122e419923

Write tabular data to text file: Write a short table of the exponential function to a text file

called exp.txt.

Write in this file.

Open a new file.

String array

Function in MATLAB:

User-defined functions: usually engineers will need only to encode a particular computation for use with

an 'ode solver' or 'integration' function already provided by MATLAB. For writing a user-defined

MATLAB function, we will need a specific format and several tips must be considered.

Format of the function file:

The function Prototype or Declaration: The very first thing you see in every function file (after the

comments) is the line with the keyword function on it. This line is called the function "prototype" or

"declaration".

It is important to know that this line Doesn't Do Anything! In other words, this line is a syntactic pattern

that tells MATLAB important information about the function. The line is never executed in your program.

Thus, the function prototype is a means for telling MATLAB that the M file contains a function (not a

script), what the name of the function is, what its return variable is called, and what parameters it

takes. When the function is called (run by the computer), the computer starts at the first line of the codes

right after the prototype.

In above example, adding two numbers is the first actual line of the function is:

 Prototype or Declaration

 First actual line of function

The structure of a function is shown in following table.

Function

Description

Prototype/ Declaration

Line

Return value The goal of this function or the final value that is

supposed to find by this function (In above example

“sum”)

= Showing relation between the return value and

parameters

Function name Right after “=” we must use the same name we want

to save the function with that name later!

‘(‘ Open parenthesis

Parameters Write all variables and parameters which will be use

in function and have relation with return value

‘)’ Close parenthesis

Codes Write all the code after that

end Finally use “end” command to close function

Note 1: The “return value” must be the last line of code and calculations in function.

Note 2: The name of the file must match the name of the function.

H-1 help section: The first line of help text, often called the H1 line, typically contains a brief description

of the function. For above example:

H-1 help

section

Function with multiple return values:

Example:

Session 10

function_handle:

A typical use of function handles is to pass a function to another function. For example, you can use

function handles as input arguments to functions that evaluate mathematical expressions over a range of

values.

Named function handles: represent functions in existing program files, including functions that are part

of MATLAB and functions that you create using the function keyword.

Example 1:

Example 2:

Anonymous function handles: (often called anonymous functions) represent single inline executable

expressions that return one output.

Example 3:

Example 4:

• fminbnd: Function to find minimum of single-variable

function on fixed interval.

fsolve: Solve system of nonlinear equations.

Example 5: Solve the following two nonlinear equations in two variables.

(𝒙𝟏)
𝟐 + 𝒔𝒊𝒏(𝒙𝟐) = 𝟑 ∗ 𝒙𝟐 + 𝒙𝟏/𝒄𝒐𝒔(𝒙𝟐)

𝒆𝒙𝟐 + 𝟕 ∗ 𝒙𝟐 = 𝒄𝒐𝒔(𝒙𝟏)

Convert the equations to the form F(x)=0.

(𝒙𝟏)
𝟐 + 𝒔𝒊𝒏(𝒙𝟐) − 𝟑 ∗ 𝒙𝟐 − (𝒙𝟏)/𝒄𝒐𝒔(𝒙𝟐) = 𝟎

𝒆𝒙𝟐 + 𝟕 ∗ 𝒙𝟐 − 𝒄𝒐𝒔(𝒙𝟏) = 𝟎

Base on the above equations, write a function that computes the left-hand side of these two equations.

Rather than x1, x2, …

we can define just one x

in and then in equations

show with x(1), x(2),…!

ode45: Solver for differential equations — medium order method.

Simple ODEs can be used for a single solution component like following example.

Example 6: Solve 𝑦′ = 𝑒𝑥
(1 2⁄)

 with use ode45 for x interval of [0,5] and the initial condition y0 = 0 and

plot it.

local and global function variables: Ordinarily, each MATLAB function has its own local variables,

which are separate from those of other functions and from those of the base workspace. However, if

several functions all declare a particular variable name as global, then they all share a single copy of that

variable. Any change of value to that variable, in any function, is visible to all the functions that declare it

as global.

Example:

Create a function and define x as a global variable.

Create another function and define and use x as a global variable as well.

These two variables in both functions become link to each other!

• Note 1: To clear a global variable from all workspaces, use clear global variable.

• Note 2: To clear a global variable from the current workspace but NOT other workspaces,

use clear variable.

nargin: nargin returns the number of function input arguments given in the call to the currently executing

function.

Example: Create a function that accepts up to two inputs. Use nargin in the body of the function to

determine the number of inputs.

nargout: nargout returns the number of function output arguments given in the call to the currently

executing function.

Example: Create a function that able to calculate subtraction between two numbers and find absolute

value between them if the user asking for it.

https://www.mathworks.com/help/matlab/ref/nargin.html#d122e863483
https://www.mathworks.com/help/matlab/ref/nargin.html#d122e863483

