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Introduction 

 

 Reference book for this class: Mechanical Vibration (S. Rao) 5th edition (Prentice Hall) 

 

Mechanical Vibration (Structural Dynamics): A broad field of engineering or applied 

mechanics  

Engineering mechanics: It is one of the oldest disciplines in engineering and it’s the field that 

deal with the action of forces or environmental effect on a body and how that body react to 

forces. 

Main courses in engineering mechanic (solid): 

1) Statics 

2) Mechanics of material 

3) Dynamics 

4) Kinematics 

5) Mechanical vibrations 

 

 

Any field in engineering can be represent by following diagram 

 

 

 

 

 

 

 

 

This is all we do in study engineering mechanics. The only differences is related to different 

assumptions or the nature of those components. 

 

Statics:  

A) Forces or load (time independent)   

B) Assumed system be a rigid body (particles)  

C) Forces 

 

Example: 

 

 

 

 

 

 

 

 

 

 

Input 

Output 
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System 

A B C 

System (Rigid body) 

A 

B 
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Because in statics, we have rigid body as the system, it cannot absorb energy and cannot be 

deformed, it simply transfer the whole input force to supports.  

 

Mechanics of material: 

A) Forces or load (time independent)   

B) Assumed system be a flexible body (deformable) – (Elasticity)   

C) Forces/ Internal Forces (shear and moment inside of a beam)/ Deformation 

 

 

 

Dynamics (rigid bodies): 

A) Forces (time dependent) 

B) Assumed system be a rigid body 

C) Time dependent forces (Also, velocity, acceleration, etc.) 

 

 

Kinematics (rigid bodies): 

A) Input motion 

B) Assumed system be a rigid body 

C) Output motion (position, displacement, velocity, acceleration, etc.) 

 

Mechanical vibrations: 

A) Forces (time dependent) or any other time dependent phenomena can that causes a change in 

the system (e.g. displacement). The forces can be desirable (like in engines) or undesirable 

(like earth quick)! 

B) Assumed system be a flexible body. That means not whole the force/energy that goes to the 

system doesn’t get out of the system and some part of it absorb by system (damping). A 

flexible body has inertia, elasticity, and energy absorption (dissipation). 

C) Forces/ Displacements/ Stresses(𝜎) & Strains (𝜀) 

 

 

 

 

 

 

 

 

 

 

 

Stress (𝜎) 
Strain (𝜀) 
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What we need for this course 

 
 

 

 

 

 

 

 

 

 

 The ultimate goal in Mechanical vibration course: is it possible to set up a mathematical model 

that has all of these elements in it and represents the whole system?  

 

For formulating mechanical vibration equations, we will use the second order of ordinary 

differential equation (ODE). 

 

 There are two ways for solving an ODE: 

1) Laplace transform (𝑙) 

2) Direct formulation/ Direct integration  

 

 

 

 

 

 

 

 

 

Rather than solving a very complicated integral, in the Laplace transform method, we are first 

mapped the equation to another domain and then we doing inverse mapping to solve the problem.  

 

In this course, we are dealing with some simple second order differential equations, so we are 

using direct approach for solving the problems. 

 

 

 

 

Input 

Output 

(Response) 
System 

A B C 

Forces/ displacement 

(time dependent) 

Forces/ displacement/ 

Stresses (𝜎) & Strains (𝜀)  Flexible body 

𝑆 

𝑦 𝑦′′  

 Direct Integral 

Laplace Transform 

𝑙−1(𝑠)  

 

𝑙 

∫ 𝟎 
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 We are working with complex numbers in this course. 

 

The real numbers have two dimensions:  Real dimension & Imaginary dimension  

 

 

 

 

 

 

 

 

Some number may have the imaginary part or may not (for instance, 5 = 5 + 𝑖(0)) 

Complex algebra has its own operation: 

1) Summation/ subtraction 

If: 𝑍1 = 𝑥1 + 𝑖𝑦1 ,  𝑍2 = 𝑥2 + 𝑖𝑦2 

𝑍𝑡 = 𝑍1 + 𝑍2 = (𝑥1 + 𝑥2) + 𝑖(𝑦1 + 𝑦2)  

2) Multiplication  

Note: 𝑖 = √−1  so 𝑖2 = 𝑖. 𝑖 = √−1. √−1 = −1 

𝑍𝑡 = 𝑍1. 𝑍2 =(𝑥1 + 𝑖𝑦1) . (𝑥2 + 𝑖𝑦2) = (𝑥1𝑥2 − 𝑦1𝑦2) + 𝑖(𝑥1𝑦2 + 𝑥2𝑦1) 

 

3) Division  

 

𝑍𝑡 =
𝑍1

𝑍2
          𝑍𝑡 . 𝑍2 = 𝑍1            From this equality we can find 𝑍𝑡 

 

𝑍𝑡 =
𝑥1𝑥2 + 𝑦1𝑦2 + 𝑖(𝑦1𝑥2 + 𝑥1𝑦2)

𝑥1
2 + 𝑦1

2
 

Note: If two complex numbers are equal that means real parts of them are equal and imaginary parts 

of them are equal too. 

𝑍1 = 𝑍2             𝑥1 = 𝑥2 & 𝑦1 = 𝑦2 

 

 

 

 

 

I 

R 

𝑍 = 𝑥 + 𝑖𝑦 

𝑥 

𝑦 



                                                               ME 4440-5540 Lecture 2 

3 
 

 

 

 

There is another way to look at an analogy of real numbers with using polar coordinates.  

 

 

 

 

 

 

 

 

 

Also, “Z” can be written in form of 𝑍 = 𝑟𝑒𝑖𝜃. 

 Complex conjugate: Two numbers which are symmetric with respect to the real axis (they have 

same real values and opposite imaginary values) 

 

𝑍1 = 𝑥1 + 𝑖𝑦1    

𝑍1
∗ = 𝑥1 − 𝑖𝑦1   

 

 

 

 

 

 

 

 

 

 

 

 

𝜃 

𝑟 

𝑍 = 𝑟 (cos(𝜃) + sin (𝜃)) 

𝑥 = 𝑟 cos (𝜃)  
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Mechanical Vibration 

 What is the objective? 

The objective of mechanical vibration is we want to analyze and understand the behavior of a 

system under the action of a desirable/undesirable motion (to use this vibration in an effective 

way or eliminate it from system).  

In vibration we have focus on the system and that is the most important part. Also, we have to 

understand how model and present the force. 

 System can be simple or very complex. For the complex system, as an engineer we have 

to simplify the system to be more understandable. 

 Force is time dependent. 

 

 

 

 

 

 

 

 

 

 

 

System is that element with all inherent characteristics of the real physical structure. Any physical 

structure has in general no more than three major inherent properties or characteristics that define 

basically what any system made of or is capable of doing in order to resist the action of a complain. 

These properties are: 1) Mass (m) 2) Elasticity (k) 3) Energy Absorption (c).  

 

Mass for the inertia of the system which as the result of the action of the force moves in the certain 

direction. The system or that structure has the ability to resist this motion. This resistance can 

comes in two distinct ways: Elasticity, which is the structure resists by going through some 

deformation, bending, reacting to the action of the force or Energy Absorption, that system or 

structure resist the imposed motion or the force by trying to dissipate the effect of that action or 

dissipating energy that resists that motion.   

 

The goal of vibrations analysis, is finding the system as the most appropriate mathematical model 

of a real/physical structure or mechanism.  

 

 

 

 

 

Input    𝑓(𝑡) 

Output 

(Response) 
System 

Disturbance (Forces, 

displacement, 

acceleration, etc. (time 

dependent) 
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Idealization 

 

 Idealization: 1) Making logical assumptions based on knowing the physics of the structure 2) 

Defining some things that can help us to develop the proper mathematical model. 

 

1) Disturbance (𝑓(𝑡)): This force has certain forms or a behavior  

2) Motion: We are dealing with two types of motion: Translational and rotational 
 

 What is the main difference between translational and rotational motion?  

 

In both of them we are talking about the mass go to some motion. But in translational motion we 

are look at the motion in terms of what is happening to the center of mass. The distribution of the 

mass or the way the mass is distributed or the inertia are not so important in translational motion 

while in rotational motion mass distribution is super important. 

 

Translational motion: Dealing with the mass or the center of the mass or how the mass is lumped 

at one point. 

Rotational motion: Dealing with mass moment of inertia 

 

3) Degree of freedom: it describes when the structure start to move how every single mass 

element in that structure moves. If there is one independent deformation that the rest of 

structure can be defined according to that, we will have one degree of freedom.   

 

Example: In the following light, if we assume whole wright of structure is just concentrate in the 

light (chain is weightless), then we will have one degree of freedom and we can describe motion 

of everything else respect to the blob. In other word, if you get the overall motion of a structure 

represented by the motion of a single point we call this one degree of freedom. 

 

 

 

 

 

 

 

 

 

If we can assume the entire mass of a structure or system is lumped in a single point which moving 

in a certain direction (can be a translational or rotational) then we will have a system with a single 

degree of freedom. 

 

 

 

 

F 
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4) Type and shapes of 𝑓(𝑡): This force can be in various shape and various types. 

 

a) Harmonic force: Sinusoidal cyclic force (like the engine of the car) 

 

 
b) Periodic (not harmonic) force: 

 

 
c) General force: 1) Deterministic: like a blast load, an impact load etc. 2) Random force: 

(completely unpredictable and predictability associated with some probability) like 

earthquake, wind load, etc. 

 

Mechanical vibration can be categorized on two distinct ways.  

First, based on type of force that acts on the system. So, the system can vibrating without the 

force acting on it and it is called free vibration. For instance, wind has been blowing and move 

the trees then wind stops but trees still vibrating and moving. Or the system is vibrating due to 

the action of the force that continuously is acting on it and exist and it is called forced vibration. 

 

The following system has one degree of freedom. This system includes a mass (m) which is 

moving because of a force (f(t)) in one direction (translational). This motion (displacement) is a 

function of time (u(t)). Also, we have something that is trying to stop the motion of the mass (it 

is named stiffness or elasticity element (k)). We will assume this system is linear, so that 

deformation would be a linear function of the displacement. We can represent that by a linear 

force which can be shown by a spring. We will have another kind of resistance against the 

motion which is the energy absorption and we call it damping element (c).   
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Mechanical Vibration  

In this course, we use “u” rather than “x” to be able to analyze the multi directional motion and 

not make any confusion with x-y frame. Also, we assume small values for “u” and that means 

the deformation of structure and material will be remain in the elastic range. 

 

Input: 𝒇(𝒕) 

System: (m, k, c) 

Output/response: u(t) 

All structures in the World can be can be described by the motion of a single point where the 

entire mass of the structure is lumped at that point. So, we can assumed and present most 

structures in the World by a single degree of freedom (S.D.O.F) model. 
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Mechanical vibration has two main Objectives: 

1) How to model a physical system as S.D.O.F. system. If we have a structure, how we can 

define the stiffness element, damping element, and mass of structure. 

2) How to find the response (displacement u(t), velocity 𝑢̇, acceleration 𝑢̈, stress 𝛿 and 

strain 𝜀, etc.) 

 

A physical system in general can be presented in one of the following forms:  

1) Undamped System: System with not ability to absorb energy (or negligible) 

 

2) Damped System: System with ability to absorb energy 

 

      
 

 

Type of Vibration 

 

Type of System Type of Force 

 

Free Vibration (Force was in 

the past but No longer any 

force now) 

 

 

Undamped System 

 

 

 

Damped System 

 

 

Forced Vibration (Continues 

force all the time) 

 

 

Undamped System 
Harmonic    

Periodic (not harmonic) 

 

Damped System 
General Deterministic 

Random 

 

For solving the system we will use the Free Body Diagram. There two ways to set up the 

free body diagram in dynamics and solving dynamic vibration problems: 

1) Newton’s low 

2) D' Alembert’s principle : In  this method in order to set up or solve a dynamic problem, 

you treat the problem as a static case by drawing the free body diagram and place the 

D'Alembert’s force which is basically is an inertia force on it in opposite direction of the 

motion (mass times acceleration 𝑚 𝑢̈). Then with this free body diagram, we can write the 

equations of equilibrium which are similar to the static equilibrium.   

 

Undamped  Damped  
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In this diagram: 

 

𝑓𝑘: Force of elasticity. This force is a linear function to displacement and can be find from 

multiplication of displacement to some constant value (stiffness coefficient).  

 

𝑓𝑐: Damping force. In reality this force is a very complex and hard to calculate. To simplify 

that, we are making an assumption and define this force as multiplication of velocity to some 

constant value (damping coefficient).  

 

Equations of equilibrium: 

 

∑ 𝐹 = 0  

 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝑓(𝑡)           Equation of motion 

 

 

 

 

 

Equation of motion: The mathematical representation form of the entire physical system, 

input, and response. 

 

Whole mechanical vibration problems will be solved by using “equation of motion” for 

different condition. Our focus in this course is on how to set up model of a physical system 

and convert it to the “equation of motion” , then solve the equation to find response and 

find out what is the meaning of that response and what kind of information that will give 

us. 

 

 

System Input Response 
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Undamped Free Vibration S.D.O.F System 

 

Summary of last time: 

Any physical system that with a single coordinate can describe the motion, it can be modeled as a 

single degree of freedom system.   

Any system can be assumed which is moving in only one direction that would be a single degree 

of freedom system. This system would be include the moving mass (translation/rotational) and 

motion of system resisted by two elements: stiffness element and damping element. 

 

 

Then, we just used D' Alembert’s principle which says, you can set up the free body diagram of a 

dynamic system by including a fictitious force which we call force of inertia. This force for a 

translational motion would be 𝑚𝑢̈ and for rotational motion would be mass moment of inertia 

multiply to rotational acceleration. 

 
 

Equations of equilibrium: 

 

∑ 𝐹 = 0  

 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝑓(𝑡)           Equation of motion 

 

 

 
System Input Response 

Stiffness 

Damping 
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The mechanical vibration consists of two important areas: 

 

1. We need to know how to set up the S.D.O.F model of a physical system 

Basically till now, we just accept that any system in the world can be model as a 

combination of mass, stiffness, and damping elements but if we have a physical system 

how we can model it with those parameters? 

2. Solving the equation of motion 

 

Classification of Equation of Motion: 

In this class we will study: 

Case 1: Undamped system (𝑪 = 𝟎): We assume the physical system has no energy absorption 

capability. So, whole the force only causes the deformation (like what you studied in mechanics 

of material with only difference that here the force is function of time) 

1a) Undamped System-Free Vibration (𝒇(𝒕) = 𝟎): Source of vibration is not exist anymore. 

1b) Undamped System-Forced Vibration (𝒇(𝒕) ≠ 𝟎): Source of vibration is still exist. 

1b1) Undamped System-Forced Vibration with Harmonic force 

1b2) Undamped System-Forced Vibration with Periodic force 

1b3) Undamped System-Forced Vibration with General force 

 

Case 2: Damped system (𝑪 ≠ 𝟎): We assume the physical system has energy absorption 

capability. 

2a) Damped System-Free Vibration (𝒇(𝒕) = 𝟎) 

2b) Damped System-Forced Vibration (𝒇(𝒕) ≠ 𝟎) 

2b1) Damped System-Forced Vibration with Harmonic force 

2b2) Damped System-Forced Vibration with Periodic force 

2b3) Damped System-Forced Vibration with General force 
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Case 1: Undamped system (𝑪 = 𝟎): 

1a) Undamped System-Free Vibration (𝒇(𝒕) = 𝟎) 

First of all we need to define some characteristic of parameters which are very important in 

mechanical vibration and basically they are basis to set up the S.D.O.F model of a physical 

system. 

Study an undamped system with free vibration give us some specific information and essential 

characteristics about our system. 

This system include only stiffness and mass as you can see in following schematic model (or can 

be a rotational system). 

 

 

𝑚𝑢̈ + 𝑘𝑢 = 0       

 

 

How to solve this differential equation? 

𝑚𝑥2 + 𝑘 = 0 

𝑥1,2 = ±𝑖√
𝑘

𝑚
     

 

Two solutions: 

𝑢1(𝑡) = 𝑐1𝑒
𝑖√ 𝑘

𝑚
 𝑡

 

𝑢2(𝑡) = 𝑐2𝑒
−𝑖√ 𝑘

𝑚
 𝑡

 

 

General solution: 

𝑢(𝑡) = 𝑐1𝑒
𝑖√ 𝑘

𝑚
 𝑡

+ 𝑐2𝑒
−𝑖√ 𝑘

𝑚
 𝑡

 

 

Equation of motion for  

Undamped system-free vibration 

It has two roots, so we 

will have two solutions 
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We can write “𝑢 (𝑡)” in the form of sin and cos (Note: 𝑒𝑖𝜃 = 𝑐𝑜𝑠 𝜃 + 𝑖 𝑠𝑖𝑛 𝜃): 

 

𝑢(𝑡) = 𝑐1 (cos (√
𝑘

𝑚
 𝑡) + 𝑖 𝑠𝑖𝑛 (√

𝑘

𝑚
 𝑡)) +  𝑐2 (cos (√

𝑘

𝑚
 𝑡) − 𝑖 𝑠𝑖𝑛 (√

𝑘

𝑚
 𝑡)) 

𝑢(𝑡) = (𝑐1 + 𝑐2) (cos (√
𝑘

𝑚
 𝑡)) +  (𝑐1 − 𝑐2) 𝑖 (𝑠𝑖𝑛 (√

𝑘

𝑚
 𝑡)) 

Note: (𝑐1 + 𝑐2) & 𝑖 (𝑐1 − 𝑐2) both are constant values. So, we can replace them with some other 

constant values. 

 

𝑢(𝑡) = 𝐴1 (cos (√
𝑘

𝑚
 𝑡)) +  𝐴2  (𝑠𝑖𝑛 (√

𝑘

𝑚
 𝑡)) 

 

So, the displacement response for an undamped system with free vibration would be a harmonic 

sinusoidal function.  

 

The frequency of that harmonic oscillation named “Natural Frequency” of the system. Actually, 

this frequency represents the natural characteristics of the system and each system in the World 

has its own unique natural frequency (because each system has different mass and stiffness). 

 

𝜔𝑛 = √
𝑘

𝑚
 

 

 

𝑢(𝑡) = 𝐴1 cos(𝜔𝑛 𝑡) +  𝐴2  𝑠𝑖𝑛 (𝜔𝑛 𝑡) 

 

 

 

Natural Frequency: 

General Solution: 
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Undamped Free Vibration S.D.O.F System 

 

For finding the values of 𝐴1 & 𝐴2, we need two initial conditions: 

 𝑡 = 0                           𝑢(0) = 𝑢0               &              𝑢̇(0) = 𝑢̇0 

 

 

𝑢(0) = 𝐴1 cos(0) + 𝐴2  𝑠𝑖𝑛 (0) = 𝐴1 = 𝑢0 

 

𝑢̇(𝑡) = −𝜔𝑛 𝐴1 sin(𝜔𝑛 𝑡) + 𝜔𝑛 𝐴2  𝑐𝑜𝑠 (𝜔𝑛 𝑡) 

 

𝑢̇(0) = −𝜔𝑛 𝐴1 sin(0) + 𝜔𝑛 𝐴2  𝑐𝑜𝑠 (0) = 𝜔𝑛 𝐴2  = 𝑢̇0 

 

So: 

𝐴1 = 𝑢0    &    𝐴2  =
𝑢̇0

𝜔𝑛
 

 

𝑢(𝑡) = 𝑢0 cos(𝜔𝑛 𝑡) + 
𝑢̇0
𝜔𝑛
  𝑠𝑖𝑛 (𝜔𝑛 𝑡) 

 

Also, we can simplify this General solution with multiply and dividing this equation by the 

constant value of √𝐴1
2 + 𝐴2

2
: 

𝑢(𝑡) = √𝐴1
2 + 𝐴2

2

(

 
 𝐴1

√𝐴1
2 + 𝐴2

2

cos(𝜔𝑛 𝑡) + 
𝐴2

√𝐴1
2 + 𝐴2

2

  𝑠𝑖𝑛 (𝜔𝑛 𝑡)

)

 
 

 

 

𝑎2 + 𝑏2 = 1                           𝑠𝑖𝑛 2𝜃 + 𝑐𝑜𝑠2𝜃 = 1    

(Always there is an angle 𝜃 which can satisfy this equation. Also, we can replace √𝐴1
2 + 𝐴2

2
 

with some other constant value A which can be find from the initial condition. 

0 1 

1 0 

Solution in terms of some 

initial conditions: 

a b 
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 𝑎 = 𝑠𝑖𝑛𝜃   ,     𝑏 = 𝑐𝑜𝑠𝜃    

 

From initial condition: 

𝐴 = √𝐴1
2 + 𝐴2

2 = √𝑢02 + (
𝑢̇0

𝜔𝑛
)
2

= amplitude 

𝜃 = 𝑡𝑎𝑛−1 (
𝐴1

𝐴2
) = 𝑡𝑎𝑛−1 (

𝑢0𝜔𝑛

𝑢̇0
)= Phase angle 

Phase angle shows how the signal lags behind the sinusoidal function. 

𝑢(𝑡) = 𝐴(𝑠𝑖𝑛𝜃 cos(𝜔𝑛 𝑡) +  𝑐𝑜𝑠𝜃  𝑠𝑖𝑛 (𝜔𝑛 𝑡)) 

 

𝑢(𝑡) = 𝐴 sin (𝜔𝑛 𝑡 + 𝜃) 

 

 

General Solution (in the term 

of single sinusoidal form): 

𝑢(𝑡) 

𝜃 

𝜃 

𝜃 

𝑢(𝑡) 

𝑢(𝑡) = 𝐴 sin (𝜔𝑛 𝑡 + 𝜃) 
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Velocity is the derivative of displacement function and would be in form of sin function. Therefore, 

whenever displacement is maximum, velocity is zero and for zero displacement, we will have 

maximum velocity and the change from zero velocity to maximum velocity takes (𝑡 =
𝜋

2𝜔𝑛
). 

 As it discussed before, one of the important concepts for any physical system is natural 

frequency. 

 The motion of S.D.O.F. for an undamped system is harmonic (it repeats itself after each period 

𝑇 =
2𝜋

𝜔𝑛
 sec). 

 𝜔𝑛 = √
𝑘

𝑚
 (rad/sec)   

 Hertz: We can define the natural frequency in another form (unit: 𝑠−1): 𝑓 =
𝜔𝑛

2𝜋
 (Hz) 

 If we write the mass in term of the weight natural frequency would be equal: 

 𝜔𝑛 = √
𝑘.𝑔

𝑊
             𝑓 =

1

2𝜋
√
𝑘.𝑔

𝑊
            

However, “g” is constant value &  
𝑊

𝑘
= 𝛿𝑠𝑡 (𝛿𝑠𝑡: static displacement/deformation of the system) 

𝑓 =
1

2𝜋
√
𝑘.𝑔

𝑊
=

1

2𝜋
√
𝑔

𝛿𝑠𝑡
               𝑇 =

1

𝑓
= 2𝜋√

𝛿𝑠𝑡

𝑔
 

 

That means the natural frequency of any system can be calculate by static equilibrium. So, if 

you know the stiffness (k) of the system and weight (W) of the system you can find the natural 

frequency of that system! 

𝜃 

𝑢(𝑡) 

𝑢0
2 

𝑢0 

𝑢̇0 

 

𝑢̇0 

 

Velocity zero 
𝑇 

𝑢(𝑡) = 𝐴 sin (𝜔𝑛 𝑡 + 𝜃) 
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Model a System as S.D.O.F 

Summary of last time: 

 We talked about a single degree of freedom system.   

 The D' Alembert’s principle was expressed. 

 Based on damped/Undamped and free vibration/forced vibration we classified all possible 

S.D.O.F. systems. 

 We analyzed part of Undamped System-Free Vibration and defined an important 

characteristic of system, natural frequency (𝜔𝑛) 

 

 

Look at this system: 

 

 
 

The equation of motion is based on the assumption that the dynamic motion starts from the state 

of static equilibrium. 

 

 
 

 

Equation of motion: 𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝑓(𝑡) 

Where is the gravitation force (mg) in the 

equation of motion? Why it’s not appear in this 

equation?          

𝑚𝑔 

𝑚𝑔 

𝑢 = 𝑢𝑠 + 𝑢′ 
𝑓(𝑡) 

1 2 3 
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Free Body Diagram 1 to 2: 

 
𝑓𝑘 = 𝑘. 𝑢𝑠 = 𝑚𝑔 

 

𝑢𝑠 =
𝑚𝑔

𝑘
 

 

Free Body Diagram 1 to 3: 

 

 
𝑚𝑢′̈ + 𝑘𝑢′ = 𝑓(𝑡) − 𝑚𝑔   

 

𝑢 = 𝑢𝑠 + 𝑢′            𝑢′ = 𝑢 − 𝑢𝑠 = 𝑢 −
𝑚𝑔

𝑘
 

𝑚𝑔

𝑘
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑣𝑎𝑙𝑢𝑒           𝑢′̈ = 𝑢̈ 

𝑚𝑢̈ + 𝑘 (𝑢 −
𝑚𝑔

𝑘
) = 𝑚𝑢̈ + 𝑘𝑢 − 𝑚𝑔 = 𝑓(𝑡) − 𝑚𝑔   

 

𝑚𝑢̈ + 𝑘𝑢 = 𝑓(𝑡) 

 

So, as you can see 𝑚𝑔 is not part of the equation of motion when the dynamic motion starts from 

the state of static equilibrium. 
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Before continue talking about undamped System-Free Vibration, we want to know how to set up 

the S.D.O.F model of a physical system? 

 

First of all, you need to know some basic concept of stiffness (review this part from mechanics 

of material) 

 

Based on the complexity of the system, there are three main approaches can be used to model a 

system.  

1) Simple cases: Direct Derivation 

2) Medium cases: Using Structural analysis approach  

3) Complex cases: Energy method:   

 Conservation of energy 

 Lagrange’s approach (for more complex systems) 

 Rayleigh’s method (for the most complex systems) 

 

1) Direct Derivation 

Direct Derivation: Using Free Body Diagram and driving the equation of motion. 

What is the stiffness? Ability of the structure to resist about deformation (Or force that generate a 

unit displacement).  

Consider we have a one directional system like a spring: 

𝐹 = 𝑘. 𝑥 

In this case for any input force, if displacement become equal 1 (𝑥 = 1), then stiffness of system 

(𝑘) would be equal to the applied load (𝐹). 

𝐹 = 𝑘. 𝑥           𝐹 = 𝑘 

Example 1: We have a beam (system) which is fixed from one end and load is applying at the 

other end of it.  

 

 

If we have the properties of this beam (𝐸, 𝐼, 𝐿) we can write the displacement for the load (𝑃): 

𝛿 =
𝑃𝐿3

3𝐸𝐼
 

1 

One direction translational deformation case 
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Can you replace this beam with a single spring? Yes, because if you look at the figure, the beam 

resisting against the displacement in the same direction of the applied load. So, this system is 

equivalent to: 

 

What is the stiffness of this beam equivalent? 

If we put displacement of system equal to one, from previous discussion the force would be 

equal to the stiffness (𝐹 = 𝑘) 

𝛿 =
𝑃𝐿3

3𝐸𝐼
                  𝑘 =

3𝐸𝐼

𝐿3  

So, this is how we can find an equivalent model of a physical system. 

  

1 k 
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Model a System as S.D.O.F 

Example 2: We have a shaft with a disk (lumped mass) is subjected to a time dependent torque. 

This shaft has the geometric properties of length (L), shear module (G), and moment of inertia of 

the cross section (J). Find a single degree of freedom model that represent the physical system. 

(We have to find mass and stiffness equivalent to this system) 

 

 

One of the objectives is finding the natural frequency of this system to be able to write the 

equation of motion for this system. 

In this system, we have a torsional force and a shaft which is resisting an angular deformation. 

The rotational motion of the disk is resisted by the shaft (torsional spring).  

𝜃 =
𝑇𝐿

𝐽𝐺
 

So, if we put 𝜃 (rotational displacement/angular deformation) equal one then the load 𝑇 would be 

equivalent to torsional stiffness of the spring (𝑘𝑡).  

 

 

𝜃 =
𝑇𝐿

𝐽𝐺
            𝑘𝑡 =

𝐽𝐺

𝐿
             

(𝐽 =
𝜋𝐷4

32
 , D: Diameter of the shaft) 

Free Body Diagram: 

 

 

 

 

One direction rotational deformation case 

1 𝑘𝑡 

I: Moment of inertia 

∅̈: Angular acceleration   
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Equation of motion: 

𝐼∅̈ + 𝑘𝑡∅ = 𝑇(𝑡)   

𝐼∅̈ +
𝐽𝐺

𝐿
∅ = 0   

                           𝑚𝑢̈ + 𝑘𝑢 = 𝑓(𝑡)           𝜔𝑛 = √
𝐽𝐺

𝐿𝐼
 

This system is equivalent to: 

 
 What is the difference between ∅ & 𝜃? ∅ is time-dependent angular deformation when 𝜃 is 

static deformation and stiffness is based on static deformation. 

 

𝜔𝑛 = √
𝑘

𝑀𝑡𝑜𝑡𝑎𝑙
= √

𝑘

(𝑀 +
33

140 𝑚)
 

Example 3: A rigid beam with length of “L” is pinned to the wall at point A and a mass “m” is 

connected to the other end of this beam. A spring with constant of “k” is attached somewhere 

along the beam to the bottom of it. This beam is oscillating up and down with angle of 𝜃. Find 

the equivalent system? 

 
Free Body Diagram: 
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Note: If angle 𝜃 is small enough, we can assume “x” in the Free Body diagram will be equal to: 

(𝑥 = 𝑎. 𝜃). 

Note: Because we have a rotational motion about point “A”, we will use ∑𝑀𝐴 = 0.  

 

∑𝑀𝐴 = 0  

 

𝐼𝜃̈ + 𝑓𝑘(𝑎) = 0        

 

Note:  We assume the bar is mass less and the inertia term is just related to the lumped mass 

(point mass), so 𝐼 = 𝑚𝐿2. 

 

𝑚𝐿2𝜃̈ + 𝑘(𝑎𝜃). 𝑎 = 𝑚𝐿2𝜃̈ + 𝑘𝑎2𝜃 = 0  

 

  

 

𝑚 = 𝑚𝐿2  ,   𝑘 = 𝑘𝑎2        𝜔𝑛 =
𝑎

𝐿
√

𝑘

𝑚
 

 

Example 4: A rigid bar with a mass of “m” and length of “L” is pinned at point A to the wall. This 

bar is supported by a damper with a coefficient of “c” at point “C” and a spring with stiffness of 

“k” at point “B”. This bar is subjected to a triangular distributed load (𝑝(𝑥, 𝑡) = 𝑝0
𝑥

𝐿
𝑓(𝑡)). Find 

the equation of motion and natural frequency of the system? 

 

 

 

 

 

𝑚𝑢̈ + 𝑘𝑢 = 𝑓(𝑡) 
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Free Body Diagram: 

 

Note: If angle 𝜃 is small enough, we can assume displacement at point “B” and “C” in the Free 

Body diagram will be equal to 𝑎. 𝜃 & 𝐿. 𝜃 respectively. 

 

Note: Force of spring would be 𝑓𝑘 = 𝑘(𝑎. 𝜃) & force of damp would be 𝑓𝐷 = 𝑐(𝐿. 𝜃̇) 

Note: The distributed force can be replaced by a single concentrated force at 2/3 of the length of 

the beam. 

∑ 𝑀𝐴 = 0  

𝐼𝜃̈ + 𝑓𝐷(𝐿) + 𝑓𝑘(𝑎) = [𝑝0𝑓(𝑡)
𝐿

2
] (

2

3
𝐿)  

𝐼 =
𝑚𝐿2

3
  

(
𝑚𝐿2

3
) 𝜃̈ + 𝑐(𝐿. 𝜃̇)(𝐿) + 𝑘(𝑎. 𝜃)(𝑎) = [𝑝0𝑓(𝑡)

𝐿

2
] (

2

3
𝐿)  

(
𝑚𝐿2

3
) 𝜃̈ + (𝑐𝐿2)𝜃̇ + (𝑘𝑎2)𝜃 = 𝑝0

𝐿2

3
𝑓(𝑡)    Equation of Motion 

 

 

𝑚 =
𝑚𝐿2

3
  ,   𝑘 = 𝑘𝑎2        𝜔𝑛 =

𝑎

𝐿
√

3𝑘

𝑚
 

 

This system is equivalent to: 

 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝑓(𝑡)            
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Model a System as S.D.O.F 

Example 5: Look at following simple structure. That includes a vertical rigid bar with mass of “m” 

and length of “L” which is pinned at top and attached to a horizontal spring with a coefficient (k) 

from bottom. This bar can rotate back and forth about the pinned point. Find the equivalent mass, 

equivalent stiffness, and equivalent natural frequency. 

 

Free Body Diagram: 

We will have 5 forces on this system:  

 Two forces in x & y directions to hold the bar 

 If we assume 𝜃 be small then the reaction force from the spring would be 𝑓𝑘 = k. (𝐿𝜃)   

 Force from the weight of bar (𝑚𝑔) which applied to the center of mass  

 Force of inertia which is equal to 𝐼𝜃̈ 
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∑𝑀𝐴 = 0  

𝐼𝜃̈ + (𝑚𝑔
𝐿𝜃

2
) + 𝑓𝑘(𝐿) = 0  

I for the rigid bar about point “A” would be 𝐼 =
𝑚𝐿2

3
 & 𝑓𝑘 = 𝑘. 𝐿𝜃. 

(
𝑚𝐿2

3
) 𝜃̈ +

𝑚𝑔𝐿

2
𝜃 + 𝑘. 𝐿𝜃(𝐿) = (

𝑚𝐿2

3
) 𝜃̈ +

𝑚𝑔𝐿

2
𝜃 + 𝑘𝐿2𝜃 = (

𝑚𝐿2

3
) 𝜃̈ + (

𝑚𝑔𝐿

2
+ 𝑘𝐿2) 𝜃 = 0  

 

 

𝑚𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 =
𝑚𝐿2

3
  

𝑘𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 =
𝑚𝑔𝐿

2
+ 𝑘𝐿2  

𝜔𝑛 = √
(
𝑚𝑔𝐿

2
+𝑘𝐿2)

(
𝑚𝐿2

3
)

= √
(
𝑚𝑔

2
+𝑘𝐿)

(
𝑚𝐿

3
)

   

 

Example 6: In the following structure, we have a massless L shaped rigid bar. A lumped mass 

attached to the point “C” of this bar. This bar is supported at point B and also supported at point 

“A” with a spring with a coefficient of “k”. Other information for this structure is shown in the 

figure. Find the equivalent mass, equivalent stiffness, and equivalent natural frequency. 

 

 

 

 

 

𝑚𝑢̈ + 𝑘𝑢 = 𝑓(𝑡) 
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Free Body Diagram: 

 Because bar assumed to be massless, so “𝐼𝜃̈” only related to the lumped mass. 

 Remember “𝐼𝜃̈” is the force for D' Alembert’s principle and it is always in opposite 

direction of motion. 

 “m” is a point mass rotating about point “B”, so 𝐼 = 𝑚𝑏2. 

 If we assume 𝜃 be small then the reaction force from the spring would be 𝑓𝑘 = k. (𝑎𝜃)  
 

 

 
 

∑𝑀𝐵 = 0  

𝐼𝜃̈ − 𝑚𝑔(𝑏𝜃) + 𝑓𝑘(𝑎) = 0  

(𝑚𝑏2)𝜃̈ − (𝑚𝑔𝑏)𝜃 + 𝑘. 𝑎𝜃(𝑎) = (𝑚𝑏2)𝜃̈ − (𝑚𝑔𝑏)𝜃 + 𝑘𝑎2(𝜃) = (𝑚𝑏2)𝜃̈ + (𝑘𝑎2 −𝑚𝑔𝑏)𝜃 = 0  

 

𝑚𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = 𝑚𝑏2  

𝑘𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = 𝑘𝑎2 − 𝑚𝑔𝑏  

𝜔𝑛 = √
(𝑘𝑎2−𝑚𝑔𝑏)

(𝑚𝑏2)
  

 

 

 

𝑚𝑢̈ + 𝑘𝑢 = 𝑓(𝑡) 
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2) Using Structural Analysis Approach 

 

Structural analysis approach: Usually when focus is on finding equivalent stiffness of system 

(hard to find) and equivalent of mass is easy to find (using technics like: superposition , 

definition of stiffness/flexibility, combination of stiffness elements with using the concept of 

parallel and series springs) 

In modeling a structure, the most important part is related to equivalent of stiffness element of 

the structure. In reality most of the structures made of many pieces (e.g. truss, frame, building, 

which are made of lots of loaded members) and each of these pieces have their own stiffness can 

be represent by a spring. For such a complex structure like that, how do you add up the effect of 

all of them and calculate the equivalent stiffness of the system? 

In this part we will study two cases to see how we can replace all the stiffness elements in the 

structure with a single stiffness element. 

Case 1: Spring in Series: If all stiffness elements (springs) experience the same force.  

  

Example 7: There are two bars with different geometric and material properties connected to 

each other and subjected to an axial load. This can be replace by two springs with different 

stiffness but they are subjected to the same force. So, these two elements (springs) will be 

deformed differently. That is possible to replace these two elements with a single spring? 

 

 
 

In this case, both elements are subjected to the same force. For these two springs we can write: 

 

𝑓 = 𝑘1(𝑢2 − 𝑢1)    or   
𝑓

𝑘1
= (𝑢2 − 𝑢1) 

𝑓 = 𝑘2(𝑢3 − 𝑢2)    or   
𝑓

𝑘2
= (𝑢3 − 𝑢2) 

 

For the equivalent spring we will have: 

𝑓 = 𝑘𝑒𝑞(𝑢3 − 𝑢1)     or    
𝑓

𝑘𝑒𝑞
= (𝑢3 − 𝑢1) 

Displacement 

of element-1 
Displacement 

of element-2 

1 

2 

3 
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But the summation of right side of equations 1 & 2 would be equal right side of equation 3. So, 

the equivalent stiffness of two parallel springs can be find from following equation: 

 

(𝑢2 − 𝑢1) + (𝑢3 − 𝑢2) = (𝑢3 − 𝑢1)              
𝑓

𝑘1
+  

𝑓

𝑘2
=

𝑓

𝑘𝑒𝑞
           

1

𝑘𝑒𝑞
=

1

𝑘1
+  

1

𝑘2
   or  𝑘𝑒𝑞 =

𝑘1𝑘2

𝑘1+𝑘2
 

 

For “n” springs in series: 

 

1

𝑘𝑒𝑞
= ∑

1

𝑘𝑖

𝑛

𝑖=1

 

 

Example 8: We have two shafts with different diameters and properties, if they are subjected a 

same torsional deformation, what is the stiffness of each element and equivalent stiffness? 

 

 𝑘𝑡1 =
𝐺1𝐽1

𝐿1
        𝑘𝑡2 =

𝐺2𝐽2

𝐿2
         𝑘𝑡_𝑒𝑞 =

𝐺1𝐽1
𝐿1

×
𝐺2𝐽2

𝐿2
𝐺1𝐽1

𝐿1
+

𝐺2𝐽2
𝐿2

=

𝐺1𝐺2𝐽1𝐽2
𝐿1𝐿2

𝐿2𝐺1𝐽1+𝐿1𝐺2𝐽2
𝐿1𝐿2

=
𝐺1𝐺2𝐽1𝐽2

𝐿2𝐺1𝐽1+𝐿1𝐺2𝐽2
 

 

 
 

  

Case 2: Spring in Parallel: If all stiffness elements (springs) experience the same deformation.   

 

Example 9: There are two bars with different geometric and material properties and in a parallel 

form connected to each other. This can be replace by two springs with different stiffness. These 

two elements (springs) will have same deformation. That is possible to replace these two springs 

with a single spring? 
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From the free body diagram, we have: 

 

𝑓 = 𝑓1 + 𝑓2  

 

𝑓1, 𝑓2, and 𝑓 can be find from following equations: 

 

𝑓1 = 𝑘1(𝑢2 − 𝑢1)  

𝑓2 = 𝑘2(𝑢2 − 𝑢1)  

𝑓 = 𝑘𝑒𝑞(𝑢2 − 𝑢1) 

 

So, 

𝑘𝑒𝑞(𝑢2 − 𝑢1) = 𝑘1(𝑢2 − 𝑢1) + 𝑘2(𝑢2 − 𝑢1)                 𝑘𝑒𝑞 = 𝑘1 + 𝑘2        

 

For “n” parallel springs: 

 

𝑘𝑒𝑞 = ∑ 𝑘𝑖

𝑛

𝑖=1

 

 

Right now, the main challenges is related to find out if the springs are parallel or series with each 

other. 

 

Example 10: look at following Figure. There is a beam which is connected to two springs at the 

end. This beam start to oscillate up and down. Is this structure a parallel or series case? 

 
It seems the springs are align with each other and experience same force so it should be a series 

case but it’s not! Actually beam has a deformation of 𝛿 and both springs also have 𝛿 deformation 

too, so this structure is a parallel case! 
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Note: That is so important to find if a structure is acting as a parallel case or series case. For 

instance, in the above example, if we assumed that as a series case, if 𝑘1and 𝑘2 are small values 

(weak stiffness), based on series case equation, increasing the stiffness of bar would not effect on 

equivalent stiffness (basically that part of equation goes to zero) while if it is assumed as a parallel 

case, then increasing the stiffness of bar will effect a lot on the equivalent stiffness. 

 

 

1

𝑘𝑒𝑞
=

1

𝑘1
+  

1

𝑘2
+ 

1

𝑘3
 

 

 

𝑘𝑒𝑞 = 𝑘1 + 𝑘2 + 𝑘3 

 

 

Big number 

Zero 

Big number Big number 
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2) Using Structural Analysis Approach 

 

Example 11: Find the equivalent stiffness for the following structure. 

 

 
Free Body Diagram: 

 
 

 

 

This is Parallel case. So, we will have: 

 

𝑘𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 =
3𝐸1𝐼1

𝐿1
3 +

𝐴2𝐸2

𝐿2
+ 𝑘3 

 

 

 

 

 

 

 

 

 

Beam 
Bar 

Spring 
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Example 12: Find the equivalent stiffness for the following structure. 

 

 
 

Free Body Diagram: 

 

In this case, same force (W) is applied on both beam and rope but the rope and beam have 

different displacements. So, this structure can be equivalent to series springs. 

 

 
 

 

1

𝑘𝑒𝑞
=

1

𝑘1
+  

1

𝑘2
=

1

3𝐸1𝐼1

𝐿1
3

+  
1

𝐴2𝐸2

𝐿2

=
𝐿1

3

3𝐸1𝐼1
+

𝐿2

𝐴2𝐸2
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Example 13: Find the equivalent stiffness for the following structure. 

 

 
 

 
 

Step 1: Springs with stiffness 𝑘1 are parallel to each other. 

 

𝑘𝑒𝑞_1 = 𝑘1 + 𝑘1 = 2𝑘1 

 

1 

2 

3 
4 

5 
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Step 2: Springs with stiffness 𝑘3 are parallel to each other. 

 

𝑘𝑒𝑞_2 = 𝑘3 + 𝑘3 = 2𝑘3 

 

 

Step 3: The equivalent of springs (𝑘𝑒𝑞_1) and spring (𝑘2) and equivalent of springs (𝑘𝑒𝑞_3) are 

series with each other. 

 

1

𝑘𝑒𝑞_3
=

1

𝑘𝑒𝑞_1
+

1

𝑘2
+

1

𝑘𝑒𝑞_2
=

1

2𝑘1
+

1

𝑘2
+

1

2𝑘3
=

𝑘2𝑘3 + 2𝑘1𝑘3 + 𝑘1𝑘2

2𝑘1𝑘2𝑘3
 

 

𝑘𝑒𝑞_3 =
2𝑘1𝑘2𝑘3

𝑘2𝑘3 + 2𝑘1𝑘3 + 𝑘1𝑘2
 

 

Step 4: The equivalent of springs (𝑘𝑒𝑞_3) and spring (𝑘4) are parallel to each other. 

 

 

𝑘𝑒𝑞_4 = 𝑘𝑒𝑞_3 + 𝑘4 =
2𝑘1𝑘2𝑘3

𝑘2𝑘3 + 2𝑘1𝑘3 + 𝑘1𝑘2
+ 𝑘4 =

𝑘4(𝑘2𝑘3 + 2𝑘1𝑘3 + 𝑘1𝑘2) + 2𝑘1𝑘2𝑘3

𝑘2𝑘3 + 2𝑘1𝑘3 + 𝑘1𝑘2
 

 

 

Step 5: The equivalent of springs (𝑘𝑒𝑞_4) and spring (𝑘5) are series with each other. 

 

 

1

𝑘𝑒𝑞_𝑡𝑜𝑡𝑎𝑙
=

1

𝑘𝑒𝑞_4
+

1

𝑘5
=

1

𝑘4(𝑘2𝑘3 + 2𝑘1𝑘3 + 𝑘1𝑘2) + 2𝑘1𝑘2𝑘3

𝑘2𝑘3 + 2𝑘1𝑘3 + 𝑘1𝑘2

+
1

𝑘5
 

 

 

𝑘𝑒𝑞_𝑡𝑜𝑡𝑎𝑙 =
𝑘2𝑘3𝑘4𝑘5 + 2𝑘1𝑘3𝑘4𝑘5 + 𝑘1𝑘2𝑘4𝑘5 + 2𝑘1𝑘2𝑘3𝑘5

𝑘2𝑘3𝑘4 + 𝑘2𝑘3𝑘5 + 𝑘1𝑘3𝑘4 + 2𝑘1𝑘3𝑘5 + 𝑘1𝑘2𝑘4 + 𝑘1𝑘2𝑘5 + 2𝑘1𝑘2𝑘3
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2) Using Structural Analysis Approach 

 

Example 14: Find the equivalent stiffness for the following structure. 

 

 
 

Free Body Diagram: 

 

 
 

 

For the beams and bar in this structure we have same force but different displacement so they are 

series with each other. The equivalent stiffness would be equal to: 

 

𝑘1 =
3𝐸1𝐼1

𝐿1
3            

𝑘2 =
3𝐸2𝐼2

𝐿2
3   

𝑘3 =
𝐴3𝐸3

𝐿3
  

 

1

𝑘𝑒𝑞
=

1

3𝐸1𝐼1

𝐿1
3

+
1

3𝐸2𝐼2

𝐿2
3

+
1

𝐴3𝐸3

𝐿3

=
𝐿1

3

3𝐸1𝐼1
+

𝐿2
3

3𝐸2𝐼2
+

𝐿3

𝐴3𝐸3
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Example 15: Three springs and a mass are attached to a rigid, weightless bar PQ as shown in 

following figure. Find the natural frequency of vibration of the system. 

 

 
 

Free Body Diagram: 

 

           
 

There are different methods to solve this problem. In this case because we don’t know about 

relation between third spring and two others, we are going to use equivalent force system. Based 

on this method, we can combine springs 1 & 2 and put an equivalent spring for them at the end 

of the beam (Q). Then it possible to find the equivalent for whole structure.  

 

For finding the equivalent of spring 1 &2, the moment respect to point P have to remain same. 

 

𝑓𝑘1 = 𝑘1(𝑙1𝜃)  

𝑓𝑘2 = 𝑘2(𝑙2𝜃)  

𝑓𝑘 𝑒𝑞−12 = 𝑘𝑒𝑞−12 (𝑙3𝜃)  

 

∑ 𝑀𝑃 = 𝑓𝑘 𝑒𝑞−12 . 𝑙3 = 𝑓𝑘1. 𝑙1 + 𝑓𝑘2. 𝑙2  

 

𝑘𝑒𝑞−12 (𝑙3𝜃). 𝑙3 = 𝑘1(𝑙1𝜃). 𝑙1 + 𝑘2(𝑙2𝜃). 𝑙2  

𝑘𝑒𝑞−12 𝑙3
2𝜃 = 𝑘1𝑙1

2𝜃 + 𝑘2𝑙2
2𝜃  

 

𝑘𝑒𝑞−12 = 𝑘1 (
𝑙1

𝑙3
)

2

+ 𝑘2 (
𝑙2

𝑙3
)

2
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The third spring and this equivalent spring are series with each other. So, the total equivalent of 

these three springs would be: 

 

1

𝑘𝑒𝑞_𝑡𝑜𝑡𝑎𝑙
=

1

𝑘𝑒𝑞−12
+

1

𝑘3
=

1

𝑘1 (
𝑙1

𝑙3
)

2

+ 𝑘2 (
𝑙2

𝑙3
)

2 +
1

𝑘3
 

 

𝑘𝑒𝑞_𝑡𝑜𝑡𝑎𝑙 =

[𝑘1 (
𝑙1

𝑙3
)

2

+ 𝑘2 (
𝑙2

𝑙3
)

2

] 𝑘3

𝑘1 (
𝑙1

𝑙3
)

2

+ 𝑘2 (
𝑙2

𝑙3
)

2

+ 𝑘3

 

 

 

𝜔𝑛 = √
𝑘1𝑘3𝑙1

2 + 𝑘2𝑘3𝑙2
2

𝑚(𝑘1𝑙1
2 + 𝑘2𝑙2

2 + 𝑘3𝑙3
2)

 

 

Example 16: Find the equivalent stiffness for the following structure. Assume that 𝑘1, 𝑘2, 𝑘3, 

and 𝑘4 are torsional and 𝑘5 and 𝑘6 are linear spring constants. 

 

 
 

A 
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First of all, the rotation is happened on the disk between shaft 3 and 4. So, the shaft 1, 2, and 3 

will experience same force and they are series with each other. On the other hands, shaft 4 and 

equivalent of shafts 1-3 are in different sides of the moving disk so they will have same 

deformation and parallel to each other. Springs 5 and 6 both have same deformation and parallel 

to each other and rest of the system. However, for springs, we have to change the linear motion 

to rotational motion to be able to adding them to the shafts. In this case, we can use the moment 

relation between the spring and shafts. 

 

Step 1: 

 
1

𝑘𝑒𝑞_1
=

1

𝑘1
+

1

𝑘2
+

1

𝑘3
           𝑘𝑒𝑞_1 =

𝑘1𝑘2𝑘3

𝑘1𝑘2+𝑘2𝑘3+𝑘3𝑘1
 

 

Step 2: 

 

𝑘𝑒𝑞_2 = 𝑘𝑒𝑞_1 + 𝑘4 =
𝑘1𝑘2𝑘3

𝑘1𝑘2+𝑘2𝑘3+𝑘3𝑘1
+ 𝑘4 =

𝑘1𝑘2𝑘3+𝑘4(𝑘1𝑘2+𝑘2𝑘3+𝑘3𝑘1)

𝑘1𝑘2+𝑘2𝑘3+𝑘3𝑘1
  

 

 

Step 3: 

  

𝑘𝑒𝑞_3 = 𝑘5 + 𝑘6  

 

Step 4: 

 

∑ 𝑀 = 𝑅. 𝐹𝑘  

 

For 𝜃 rotation: 

 

𝑘𝑒𝑞_𝑡𝑜𝑡𝑎𝑙 . (𝜃) = 𝑅. 𝑘𝑒𝑞_3. (𝑅𝜃)+𝑘𝑒𝑞_2. (𝜃)  

 

𝑘𝑒𝑞_𝑡𝑜𝑡𝑎𝑙 = 𝑘𝑒𝑞_3. 𝑅2+𝑘𝑒𝑞_2 = (𝑘5 + 𝑘6). 𝑅2 +
𝑘1𝑘2𝑘3+𝑘4(𝑘1𝑘2+𝑘2𝑘3+𝑘3𝑘1)

𝑘1𝑘2+𝑘2𝑘3+𝑘3𝑘1
  

 

𝐹𝑘  

Moment 

from the 

shafts 
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2) Using Structural Analysis Approach 

 

Example 17: In the following figure, we have a rigid mass that rigidly connected to the ground. 

Find the equivalent stiffness for this structure. 

 

 
If there is a rigid connection between the mass and supports, there is not any rotation happened 

between them (𝜃 = 0) and we only have 𝛿 displacement. For solving this problem, we will use 

the superposition method. 

 

 
 

 

We know 𝜃 = 0, so 𝜃1 + 𝜃2 = 0 and 𝛿 = 𝛿1 + 𝛿2. 

 

From mechanical of material: 

𝛿1 =
𝐹𝐿3

3𝐸𝐼
  ,  𝜃1 =

𝐹𝐿2

2𝐸𝐼
 

𝛿2 = −
𝑀𝐿2

2𝐸𝐼
  ,  𝜃2 = −

𝑀𝐿

𝐸𝐼
 

 

𝜃1 + 𝜃2 =
𝐹𝐿2

2𝐸𝐼
−

𝑀𝐿

𝐸𝐼
= 0            

𝐹𝐿2

2𝐸𝐼
=

𝑀𝐿

𝐸𝐼
            𝑀 =

𝐹𝐿

2
 

 

 

 

 

Internal moment 

because of rigid 

connection 
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𝛿 = 𝛿1 + 𝛿2 =
𝐹𝐿3

3𝐸𝐼
−

𝑀𝐿2

2𝐸𝐼
=

𝐹𝐿3

3𝐸𝐼
−

(
𝐹𝐿

2
)𝐿2

2𝐸𝐼
=

𝐹𝐿3

3𝐸𝐼
−

𝐹𝐿3

4𝐸𝐼
=

𝐹𝐿3

12𝐸𝐼
            𝛿 =

𝐹𝐿3

12𝐸𝐼
 

 

So, stiffness for each support element would be equal:    𝛿 =
𝐹𝐿3

12𝐸𝐼
            𝑘 =

12𝐸𝐼

𝐿3
         

 

Total stiffness of structure have to multiply by two.     𝑘𝑒𝑞 =
24𝐸𝐼

𝐿3
 

 

Example 18: In the following figure, we have a weightless disk with a spring with coefficient of 

“k” attached to the wall. This disk can rotate around point “O”. A mass with a non-deformable 

cable is connected to this disk. Find the equivalent stiffness and natural frequency for this structure. 

 

 
 

If we want to solve this problem from the main definition of stiffness which is force based on unit 

displacement, it would be hard to identify the unit displacement. So, in this case we will use a 

method is named Flexibility. 

Flexibility (the displacement for unit force) is the inverse of equivalent stiffness (
1

𝑘𝑒𝑞
) or in other 

words, it is the displacement based on the unit force. 

 

 
 

1 k 
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Free Body Diagram: 

 
∑𝑀𝑂 = 0   

 

𝑓𝑘. 𝑎 = 𝑟. 1            𝑘(𝑎𝜃) = 𝑟         

 

𝑟𝜃 = 𝛿𝐵                   𝜃 =
𝛿𝐵

𝑟
 

 

As it mentioned before in the flexibility method, the displacement for unit force (flexibility) 

equal (
1

𝑘𝑒𝑞
). So, the equivalent stiffness and natural frequency for this example would be: 

 

1

𝑘𝑒𝑞
=

𝑟2

𝑘.𝑎2
                 𝑘𝑒𝑞 =

𝑘.𝑎2

𝑟2
                   𝜔𝑛 =

𝑎

𝑟
√

𝑘

𝑚
 

 

 

 

 

 

 

 

 

 

 

 

𝑘 (𝑎
𝛿𝐵

𝑟
) 𝑎 = 𝑟                       𝛿𝐵 =

𝑟2

𝑘.𝑎2
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3) Energy method 

 

Energy method is based on: 

A) Conservation of energy 

Summation of kinetic and potential energy is constant: 𝐾𝑒 + 𝑃𝑒 = 𝐸 

B) Rayleigh’s method  

C) Lagrange’s approach  

 

A) Conservation of energy 

In conservation of energy, we say the total energy of system is made of two major source kinetic 

energy (Ke) and potential energy (Pe). 

𝑃𝑒 + 𝐾𝑒 = 𝐸𝑡𝑜𝑡𝑎𝑙 

Also, 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 so: 

 
𝑑

𝑑𝑡
𝐸𝑡𝑜𝑡𝑎𝑙 = 0                

𝑑

𝑑𝑡
(𝑃𝑒 + 𝐾𝑒) = 0 

 

If you remember, the kinetic and potential energy of a spring respectively equal to: 

𝐾𝑒 =
1

2
𝑚𝑢̇2         𝑃𝑒 =

1

2
𝑘𝑢2 

 

 Let’s check this method for the general solution of displacement (based on initial conditions) 

of an undamped system. From above equations if velocity become zero, the kinetic energy 

become zero and potential energy become maximum. On the other hands, if displacement 

become zero the potential energy become zero and kinetic energy become maximum. 

First, we try the energy method for the case that system has initial displacement but its initial 

velocity is zero. (𝑢0 ≠ 0 , 𝑢̇0 = 0) 

𝑢(𝑡) = 𝑢0 cos(𝜔𝑛 𝑡) + 
𝑢̇0

𝜔𝑛
  𝑠𝑖𝑛 (𝜔𝑛 𝑡)        𝑢(𝑡) = 𝑢0 cos(𝜔𝑛 𝑡)  &    𝑢̇(𝑡) = −𝜔𝑛𝑢0 sin(𝜔𝑛 𝑡) 

𝜔𝑛 = √
𝑘

𝑚
  

𝐸 =
1

2
𝑘𝑢2 +

1

2
𝑚𝑢̇2 =

1

2
𝑘[𝑢0 cos(𝜔𝑛 𝑡)]2 +

1

2
𝑚[−𝜔𝑛𝑢0 sin(𝜔𝑛 𝑡)]2 =

1

2
𝑘𝑢0

2cos2(𝜔𝑛 𝑡) +

1

2
𝑚 (

𝑘

𝑚
) 𝑢0

2sin2(𝜔𝑛 𝑡) =
1

2
𝑘𝑢0

2[cos2(𝜔𝑛 𝑡) + sin2(𝜔𝑛 𝑡)] =
1

2
𝑘𝑢0

2  

 

Now, we try the energy method for the case that system has initial velocity but its initial 

displacement is zero. (𝑢̇0 ≠ 0 , 𝑢0 = 0) 

Max potential energy  

Max kinetic energy  
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𝑢(𝑡) = 𝑢0 cos(𝜔𝑛 𝑡) + 
𝑢̇0

𝜔𝑛
  𝑠𝑖𝑛 (𝜔𝑛 𝑡)        𝑢(𝑡) =

𝑢̇0

𝜔𝑛
  𝑠𝑖𝑛 (𝜔𝑛 𝑡)  &  𝑢̇(𝑡) = 𝑢̇0 𝑐𝑜𝑠 (𝜔𝑛 𝑡) 

𝐸 =
1

2
𝑘𝑢2 +

1

2
𝑚𝑢̇2 =

1

2
𝑘 [

𝑢̇0

𝜔𝑛
  𝑠𝑖𝑛 (𝜔𝑛 𝑡)]

2

+
1

2
𝑚[𝑢̇0 𝑐𝑜𝑠 (𝜔𝑛 𝑡)]2 =

1

2
𝑘𝑢̇0

2 (
𝑚

𝑘
) sin2(𝜔𝑛 𝑡) +

1

2
𝑚 𝑢̇0

2cos2(𝜔𝑛 𝑡) =
1

2
𝑚𝑢̇0

2[sin2(𝜔𝑛 𝑡) + cos2(𝜔𝑛 𝑡)] =
1

2
𝑚𝑢̇0

2  

 

As it mentioned before, 𝐸 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, so:  
1

2
𝑘𝑢0

2 =
1

2
𝑚𝑢̇0

2 or 𝑃𝑒𝑚𝑎𝑥 = 𝐾𝑒𝑚𝑎𝑥 

 

 We can write the conservation of energy equation for the general solution of displacement (in 

the term of single sinusoidal) for an undamped system. In this equation “A” is amplitude 

which is equal maximum displacement.  If we replace the conservation energy with the 

values of Pe and Ke for the spring: 

 

𝑢(𝑡) = 𝐴 sin (𝜔𝑛 𝑡 + 𝜃)          𝑢𝑚𝑎𝑥 = 𝐴 

 

𝑢̇(𝑡) = 𝐴𝜔𝑛 cos (𝜔𝑛 𝑡 + 𝜃)          𝑢̇𝑚𝑎𝑥 = 𝐴𝜔𝑛           𝑢̇𝑚𝑎𝑥 = 𝜔𝑛𝑢𝑚𝑎𝑥  

 

We have 𝑢̇𝑚𝑎𝑥 for maximum kinetic energy and 𝑢𝑚𝑎𝑥 for maximum potential energy. From 

previous calculation we have: 

1

2
𝑚𝑢̇𝑚𝑎𝑥

2 =
1

2
𝑘𝑢𝑚𝑎𝑥

2           𝑢̇𝑚𝑎𝑥 = √
𝑘

𝑚
𝑢𝑚𝑎𝑥  

If we replace it in previous equation: 

√
𝑘

𝑚
𝑢𝑚𝑎𝑥 = 𝜔𝑛𝑢𝑚𝑎𝑥         𝜔𝑛 = √

𝑘

𝑚
 

 

 We can write the conservation of energy equation for an undamped system. If we replace the 

conservation energy with the values of Pe and Ke for the spring: 

𝑑

𝑑𝑡
(𝑃𝑒 + 𝐾𝑒) =

𝑑

𝑑𝑡
(

1

2
𝑘𝑢2 +

1

2
𝑚𝑢̇2) = 0  

𝑘𝑢𝑢̇ + 𝑚𝑢̇𝑢̈ = 0                     𝑘𝑢 + 𝑚𝑢̈ = 0    

 

Equation of motion for a system 

with spring (no damped) 

 

1 Max 

Max 1 
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Example 19: A vehicle with speed of 90 km/h hitting the guardrails in high way. This vehicle has 

the weight of 1000kg and assume the guardrails have a displacement of 𝛿 = 0.25 𝑚. Find the 

stiffness of this guardrails (𝑁/𝑚). The friction would be negligible in this problem.  

 

Free Body Diagram: 

 

First we have to change everything in a uniform unit. 

𝑢̇ = 90 
𝑘𝑚

ℎ
×

1 ℎ

3600 𝑠
×

1000 𝑚

1 𝑘𝑚
= 25

𝑚

𝑠
  

We know 𝐾𝑒𝑚𝑎𝑥 = 𝑃𝑒𝑚𝑎𝑥 and from the velocity of vehicle we can find the maximum kinetic 

energy. 

𝐾𝑒𝑚𝑎𝑥 =
1

2
𝑚𝑢̇0

2 =
1

2
× 1000 kg × (25

𝑚

𝑠
)

2

= 312500 𝑁. 𝑚 = 𝑃𝑒𝑚𝑎𝑥  

𝑃𝑒𝑚𝑎𝑥 =   
1

2
𝑘𝑢0

2 =
1

2
𝑘(0.25𝑚)2 = 312500 𝑁. 𝑚  

𝑘 =
312500

0.0625
= 10,000,000

𝑁

𝑚
  

 

 

 

 



ME 4440-5540 Lecture 15 
 

1 
 

3) Energy method 

 

Example 20: In the following figure, a spring with coefficient of “k” from one side attached to a 

disk and from other side is attached to the wall. This disk can rotate around point “O”. A mass 

with a non-deformable cable is connected to this disk. Find the equivalent stiffness and natural 

frequency for this structure. 

 

 

 

𝛿𝐵 = 𝑟𝜃      &     𝐼 =
1

2
𝑀𝑟2 

𝐾𝑒 =
1

2
𝑚(𝛿𝐵)̇ 2 +

1

2
𝐼𝜃̇2 =

1

2
𝑚(𝑟𝜃̇)2 +

1

2
𝐼𝜃̇2 =

1

2
𝑚𝑟2𝜃̇2 +

1

2
𝐼𝜃̇2        

𝑃𝑒 =
1

2
𝑘(𝑎𝜃)2 =

1

2
𝑘𝑎2𝜃2        

𝑑

𝑑𝑡
(𝑃𝑒 + 𝐾𝑒) = 0  

𝑑

𝑑𝑡
(𝑃𝑒) = 𝑘𝑎2𝜃𝜃̇  

M 

M 
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𝑑

𝑑𝑡
(𝐾𝑒) = 𝑚𝑟2𝜃̇𝜃̈ + 𝐼𝜃̇𝜃̈  

𝑘𝑎2𝜃𝜃̇ + 𝑚𝑟2𝜃̇𝜃̈ + 𝐼𝜃̇𝜃̈ = 0                  𝑘𝑎2𝜃 + 𝑚𝑟2𝜃̈ + 𝐼𝜃̈ = (𝑘𝑎2)𝜃 + (𝑚𝑟2 + 𝐼)𝜃̈ = 0 

𝑘𝑒𝑞 = 𝑘𝑎2  

𝑚𝑒𝑞 = (𝑚𝑟2 + 𝐼) = (𝑚𝑟2 +
1

2
𝑀𝑟2)  

𝜔𝑛 = √
𝑘𝑎2

(𝑚𝑟2+
1

2
𝑀𝑟2)

  

Example 21: Find the equivalent stiffness for the following structure. Assume that 𝑘1, 𝑘2, 𝑘3, 

and 𝑘4 are torsional and 𝑘5 and 𝑘6 are linear spring constants. 

 

 
Step 1: 

 
1

𝑘𝑒𝑞_1
=

1

𝑘1
+

1

𝑘2
+

1

𝑘3
           𝑘𝑒𝑞_1 =

𝑘1𝑘2𝑘3

𝑘1𝑘2+𝑘2𝑘3+𝑘3𝑘1
 

 

Step 2: 

 
1

2
𝑘𝑒𝑞_𝑡𝑜𝑡𝑎𝑙  . 𝜃2 =

1

2
𝑘𝑒𝑞_1 . 𝜃2 +

1

2
𝑘4 . 𝜃2 +

1

2
𝑘5 . (𝑅𝜃)2 +

1

2
𝑘6 . (𝑅𝜃)2 =

1

2
[𝑘𝑒𝑞_1 . 𝜃2 + 𝑘4 . 𝜃2 + 𝑘5 . 𝑅2𝜃2 +

𝑘6 . 𝑅2𝜃2]  

 

𝑘𝑒𝑞_𝑡𝑜𝑡𝑎𝑙  = 𝑘𝑒𝑞_1  + 𝑘4  + 𝑘5 . 𝑅2 + 𝑘6 . 𝑅2  

 

𝑘𝑒𝑞_𝑡𝑜𝑡𝑎𝑙  =
𝑘1𝑘2𝑘3

𝑘1𝑘2+𝑘2𝑘3+𝑘3𝑘1
 + 𝑘4  + 𝑘5 . 𝑅2 + 𝑘6 . 𝑅2 = (𝑘5 + 𝑘6). 𝑅2 + 𝑘1𝑘2𝑘3+𝑘4(𝑘1𝑘2+𝑘2𝑘3+𝑘3𝑘1)

𝑘1𝑘2+𝑘2𝑘3+𝑘3𝑘1
  

A 
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B) Rayleigh’s method 

Let’s imagine a simple system with only a beam with a mass at one end but this time beam has 

weight (distributed through the beam). In other words, we can’t simply replace the weight by a 

lumped force and basically it includes infinite lumped forces. 

 

The static deflection of the beam: 

𝑢(𝑥) =
𝑃𝑥2

6𝐸𝐼
(3𝐿 − 𝑥) 

𝑢𝑚𝑎𝑥 = 𝑢(𝐿) =
𝑃𝐿2

6𝐸𝐼
(3𝐿 − 𝐿) =

𝑃𝐿3

3𝐸𝐼
 

𝑢(𝑥) =
𝑢𝑚𝑎𝑥 𝑥2

2𝐿3
(3𝐿 − 𝑥) =

𝑢𝑚𝑎𝑥

2𝐿3
(3 𝑥2𝐿 −  𝑥3) 

 

The total kinetic energy of the beam: 

𝑢̇(𝑥) =
𝑢̇𝑚𝑎𝑥

2𝐿3
(3 𝑥2𝐿 −  𝑥3) 

 

The maximum kinetic energy of the beam itself (𝐾𝑒𝑚𝑎𝑥) where 𝑚 is the total mass and (
𝑚

𝐿
) is 

the mass per unit length of the beam. 

𝐾𝑒𝑚𝑎𝑥 = ∫
1

2
.
𝑚

𝐿
.

𝐿

0

(𝑢̇(𝑥))2𝑑𝑥 =
𝑚

2𝐿
∫ (

𝑢̇𝑚𝑎𝑥

2𝐿3
(3 𝑥2𝐿 −  𝑥3))

2

𝑑𝑥
𝐿

0

=
𝑚

2𝐿

𝑢̇2
𝑚𝑎𝑥

4𝐿6
∫ 9 𝑥4𝐿2 +  𝑥6 − 6 𝑥5𝐿 𝑑𝑥

𝐿

0

=
𝑚 𝑢̇2

𝑚𝑎𝑥

8𝐿7
(

33𝐿7

35
) = (

33

280
𝑚) 𝑢̇2

𝑚𝑎𝑥 

We know 𝐾𝑒𝑚𝑎𝑥 =
1

2
𝑚𝑢̇2

𝑚𝑎𝑥, so: 

𝐾𝑒𝑚𝑎𝑥 =
1

2
𝑚𝑒𝑞 𝑢̇2

𝑚𝑎𝑥 = (
33

280
𝑚) 𝑢̇2

𝑚𝑎𝑥       𝑚𝑒𝑞 =
33

140
𝑚 

 

 

M 
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Thus the total effective mass acting at the end of the beam would be: 

𝑀𝑡𝑜𝑡𝑎𝑙 = 𝑀 + 𝑚𝑒𝑞 

 

Natural frequency of the system would be: 

 

𝜔𝑛 = √
𝑘

𝑀𝑡𝑜𝑡𝑎𝑙
= √

𝑘

(𝑀 +
33

140 𝑚)
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Damped Free Vibration S.D.O.F System 

 

Look at this system: 

 

 
 

Free Body Diagram: 

 

 
𝑓𝑘 = 𝑘𝑢 ,           𝑓𝑐 = 𝑐𝑢̇ 

Equation of motion: 𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 0 

Let’s solve this differential equation: 

𝑚𝑥2 + 𝑐𝑥 + 𝑘 = 0 

𝑥1,2 =
−𝑐±√𝑐2−4𝑚𝑘

2𝑚
     

 

Two solutions: 

𝑢1(𝑡) = 𝑐1𝑒𝑥1 𝑡 

𝑢2(𝑡) = 𝑐2𝑒𝑥2 𝑡 

General solution: 

𝑢(𝑡) = 𝑐1𝑒𝑥1 𝑡 + 𝑐2𝑒𝑥2 𝑡 

 

 

It has two roots, so we 

will have two solutions 
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Critical damping coefficient (𝑐𝑐): The critical damping is defined as value of damping which 

makes 𝑐2 − 4𝑚𝑘 = 0. 

 

 

𝑐𝑐 = √4𝑚𝑘 = 2√𝑚𝑘                   𝑐𝑐 = 2𝑚𝜔𝑛 

 

In this case:  

𝑥1,2 =
−𝑐𝑐

2𝑚
=

−2𝑚𝜔𝑛

2𝑚
= −𝜔𝑛 

That is why it’s named critical damping! 

 

Damping ratio (𝜁): Damping ratio is defined as the ratio of current damping over critical 

damping (
𝑐

𝑐𝑐
). 

 

𝜁 =
𝑐

𝑐𝑐
 

 

Based on values of 𝜁 and 𝜔𝑛, the equation of motion can be rewrite: 

 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 0                𝑢̈ +
𝑐

𝑚
𝑢̇ +

𝑘

𝑚
𝑢 = 0                 𝑢̈ + 2𝜁𝜔𝑛𝑢̇ + 𝜔𝑛

2𝑢 = 0 

 

 

                                               
𝑐

𝑚
            

𝑐

𝑚
=

𝑐

𝑐𝑐
×

𝑐𝑐

𝑚
= 2𝜁𝜔𝑛 

 

𝑐𝑐 = 2𝑚𝜔𝑛           
𝑐𝑐

𝑚
= 2𝜔𝑛 

 

Also, we can rewrite the equation of roots: 

𝑥1,2 =
−𝑐 ± √𝑐2 − 4𝑚𝑘

2𝑚
 

 

−
𝑐

2𝑚
= −𝜁𝜔𝑛 

      

√𝑐2 − 4𝑚𝑘

2𝑚
= √

𝑐2 − 4𝑚𝑘

4𝑚2
= √𝜁2𝜔𝑛

2
− 𝜔𝑛

2 = 𝑖𝜔𝑛√1 − 𝜁2 

𝑥1,2 = −𝜁𝜔𝑛 ± 𝑖𝜔𝑛√1 − 𝜁2           𝑥1,2 = 𝜔𝑛(−𝜁 ± 𝑖√1 − 𝜁2) 

×
√𝑚

√𝑚
 

A B 

A: 

B: 

×
1

𝑚
 

𝜁 
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Different solution cases based on damping values (𝜁): 

Case1: Underdamped system (𝜁 < 1 or 𝑐 < 𝑐𝑐 or 
𝑐

2𝑚
< √

𝑘

𝑚
): We will have two complex 

conjugate roots. 

𝑥1,2 = 𝜔𝑛 (−𝜁 ± 𝑖√1 − 𝜁2) 

𝑢(𝑡) = 𝑐1𝑒(−𝜁+𝑖√1−𝜁2) 𝜔𝑛𝑡 + 𝑐2𝑒(−𝜁−𝑖√1−𝜁2) 𝜔𝑛𝑡 = 𝑒−𝜁 𝜔𝑛𝑡 [𝑐1𝑒𝑖√1−𝜁2 𝜔𝑛𝑡 + 𝑐2𝑒−𝑖√1−𝜁2 𝜔𝑛𝑡]  

𝑢(𝑡) = 𝑒−𝜁 𝜔𝑛𝑡 [(𝑐1 + 𝑐2) cos (√1 − 𝜁2 𝜔𝑛𝑡) + 𝑖(𝑐1 − 𝑐2) sin (√1 − 𝜁2 𝜔𝑛𝑡)] 

Note: 𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛 𝜃  

Damped natural frequency (𝜔𝑑): The frequency of underdamped case.   𝜔𝑑 = √1 − 𝜁2 𝜔𝑛 

 

The rest of simplifications and steps can be find in the book but final solution will be: 

𝑢(𝑡) = 𝐴1𝑒−𝜁 𝜔𝑛𝑡cos(𝜔𝑑𝑡 − ∅)      or     𝑢(𝑡) = 𝐴2𝑒−𝜁 𝜔𝑛𝑡sin(𝜔𝑑𝑡 + ∅0)       

Note: 𝐴1, 𝐴2, ∅, ∅0 will be find from initial conditions.  

In terms of initial displacement and velocity: 

𝑡 = 0                           𝑢(0) = 𝑢0               &              𝑢̇(0) = 𝑢̇0 

𝑢(𝑡) = 𝑒−𝜁 𝜔𝑛𝑡 [𝑢0𝑐𝑜𝑠𝜔𝑑𝑡 +
𝑢̇0+𝜁 𝜔𝑛𝑢0

𝜔𝑑
𝑠𝑖𝑛𝜔𝑑𝑡]  

Note: The above equation show the 𝑢(𝑡) is a sinusoidal function or in other words, it is a 

harmonic function. However, the amplitude of this function because of 𝑒−𝜁 𝜔𝑛𝑡will 

exponentially decrease with time. 

 

u(t) 

t 
𝑡1 𝑡2 𝑡3 𝑡4 
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Note: As it is shown in above graph, for underdamped case, always going from zero to maximum 

displacement is much faster than return (𝑡1 < 𝑡2 & 𝑡3 < 𝑡4, ....) like any shock absorber.  

We can plot the function of 𝑢(𝑡) for a system from experimental tests (like following figure). For an 

underdamped system, we will be able to calculate the damping ratio (ζ) of the system from the amplitude 

of graph at time 𝑡1& 𝑡2 when 𝑡2=𝑡1+T𝑑 (T𝑑: Period of damped vibration). 

 

 

𝜔𝑑 = √1 − 𝜁2 𝜔𝑛      &     𝜔𝑑 =
2𝜋

𝑇𝑑
  

2𝜋

𝑇𝑑
= √1 − 𝜁2 𝜔𝑛             𝑇𝑑 =

2𝜋

√1−𝜁2𝜔𝑛
 

 

∆=
𝑢1

𝑢2
=

𝑒−𝜁𝜔𝑛𝑡1

𝑒−𝜁𝜔𝑛𝑡2
=

𝑒−𝜁𝜔𝑛𝑡1

𝑒−𝜁𝜔𝑛(𝑡1+𝑇𝑑) = 𝑒𝜁𝜔𝑛𝑇𝑑  

If we use natural logarithm from both side of above equation we can make it simpler: 

𝛿 = 𝑙𝑛
𝑢1

𝑢2
= 𝜁𝜔𝑛𝑇𝑑 = 𝜁𝜔𝑛

2𝜋

√1 − 𝜁2𝜔𝑛

=
2𝜋𝜁

√1 − 𝜁2
 

In the most of the case in real structures and systems the 𝜁 is very small. So, if that is the case the 

√1 − 𝜁2 ≅ 1 and we can rewrite above equation: 

 

𝛿 = 2𝜋𝜁         (𝜁 ≪ 1) 

 

 

  

𝑢(𝑡) 

𝑢1 
𝑢2 
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Damped Free Vibration S.D.O.F System 

Case2: Critically damped system (𝜁 = 1 or 𝑐 = 𝑐𝑐 or 
𝑐

2𝑚
= √

𝑘

𝑚
): We will have two equal real 

roots. 

𝑥1,2 = 𝜔𝑛(−𝜁 ± 𝑖√1 − 𝜁2)              𝑥1,2 = −𝜔𝑛 

 

General solution: 

𝑢(𝑡) = (𝑐1 + 𝑐2𝑡)𝑒−𝜔𝑛 𝑡 

 

The above equation show the 𝑢(𝑡) is combination of linear and exponential function and it 

means the system will be damped but not very quickly! Also, it is not a harmonic function, so it 

doesn’t have repetition (non-periodic).  

For finding the constant values 𝑐1 & 𝑐2 we need to use two initial conditions: 

𝑡 = 0                           𝑢(0) = 𝑢0               &              𝑢̇(0) = 𝑢̇0 

𝑐1 = 𝑢0 

𝑐2 = 𝑢̇0 + 𝜔𝑛𝑢0 

Case3: Overdamped system (𝜁 > 1 or 𝑐 > 𝑐𝑐 or 
𝑐

2𝑚
> √

𝑘

𝑚
): This  We will have two real roots.  

 

𝑥1,2 = 𝜔𝑛(−𝜁 ± 𝑖√1 − 𝜁2)              𝑥1,2 = 𝜔𝑛(−𝜁 ± √𝜁2 − 1) 

 

General solution: 

𝑢(𝑡) = 𝑐1𝑒𝑥1 𝑡 + 𝑐2𝑒𝑥2 𝑡 

𝑢(𝑡) = 𝑐1𝑒(−𝜁+√𝜁2−1) 𝜔𝑛𝑡 + 𝑐2𝑒(−𝜁−√𝜁2−1) 𝜔𝑛𝑡
 

 

The above equation show the 𝑢(𝑡) is an exponential function and it means the system take 

infinite time to be completely damped! Also, it is not a harmonic function, so it doesn’t have 

repetition (non-periodic). 

For finding the constant values 𝑐1 & 𝑐2 we need to use two initial conditions: 

𝑡 = 0                           𝑢(0) = 𝑢0               &              𝑢̇(0) = 𝑢̇0 

-1 0 

Linear part 

Exponential 

part 
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𝑐1 =
𝑢0 𝜔𝑛(𝜁 + √𝜁2 − 1) + 𝑢̇0

2 𝜔𝑛√𝜁2 − 1
 

𝑐2 =
−𝑢0 𝜔𝑛(𝜁 − √𝜁2 − 1) − 𝑢̇0

2 𝜔𝑛√𝜁2 − 1
 

 

 
Watch this video for comparison between overdamped, critical damped, and underdamped 

systems: https://www.youtube.com/watch?v=99ZE2RGwqSM&list=LL&index=2 

 

Example 22: The following system is given. The mass of the system m=2.5kg, coefficient of 

spring k=10N/m. If the initial conditions of the system are 𝑢0 = 0.05𝑚 & 𝑢̇0 = 0 .Find the 

response of system for following cases. 

a) If C=5 𝑁 − 𝑠
𝑚⁄  

b) If C=10 𝑁 − 𝑠
𝑚⁄  

c) If C=12 𝑁 − 𝑠
𝑚⁄  

 
 

 

 

 

 

https://www.youtube.com/watch?v=99ZE2RGwqSM&list=LL&index=2
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This is a free vibration S.D.O.F damped system. For this problem or similar cases we have to do 

the following steps: 

 

Step 1: Free Body Diagram:  

 
 

Step 2: Finding the natural frequency of system (𝜔𝑛): 

𝜔𝑛 = √
𝑘

𝑚
= √

10

2.5
= 2 

𝑟𝑎𝑑

𝑠
  

Step 2: Finding the critical damping coefficient of system (𝑐𝑐): 

𝑐𝑐 = 2𝑚𝜔𝑛 = 2 × 2.5 × 2 = 10 𝑁 − 𝑠
𝑚⁄   

 

Step 3: Finding the damping ratio of system (𝜁) and find that is related to which damping case: 

a) 𝜁1 =
𝑐1

𝑐𝑐
=

5

10
= 0.5     Underdamped 

b) 𝜁2 =
𝑐2

𝑐𝑐
=

10

10
= 1        Critically damped 

c) 𝜁3 =
𝑐3

𝑐𝑐
=

12

10
= 1.2     Overdamped 

 

Step 4: Write the equation of motion (only for under-damped case, first you have to calculate 

damped natural frequency (𝜔𝑑)): 

 

a) Underdamped 

𝜔𝑑 = √1 − 𝜁2 𝜔𝑛 = 2 × √1 − 0.52 = 1.73 
𝑟𝑎𝑑

𝑠
 

𝑢(𝑡) = 𝑒−𝜁 𝜔𝑛𝑡 [𝑢0𝑐𝑜𝑠𝜔𝑑𝑡 +
𝑢̇0+𝜁 𝜔𝑛𝑢0

𝜔𝑑
𝑠𝑖𝑛𝜔𝑑𝑡]      General solution for underdamped case 

𝑢(𝑡) = 𝑒−0.5×2𝑡 [0.05cos (1.73𝑡) +
0.5 × 2 × 0.05

1.73
sin (1.73𝑡)] 

 

𝑢(𝑡) = 𝑒−𝑡[0.05cos (1.73𝑡) + 0.029sin (1.73𝑡)] 
 

b) Critically damped 

𝑢(𝑡) = (𝑐1 + 𝑐2𝑡)𝑒−𝜔𝑛 𝑡        General solution for critically damped case 

𝑐1 = 𝑢0 = 0.05 

𝑐2 = 𝑢̇0 + 𝜔𝑛𝑢0 = 2 × 0.05 = 0.1 

𝑢(𝑡) = (0.05 + 0.1𝑡)𝑒−2 𝑡 
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c) Overdamped 

𝑢(𝑡) = 𝑐1𝑒(−𝜁+√𝜁2−1) 𝜔𝑛𝑡 + 𝑐2𝑒(−𝜁−√𝜁2−1) 𝜔𝑛𝑡
       General solution for overdamped case 

𝑐1 =
𝑢0 𝜔𝑛(𝜁 + √𝜁2 − 1) + 𝑢̇0

2 𝜔𝑛√𝜁2 − 1
=

0.05 ×  2(1.2 + √(1.2)2 − 1)

2 × 2√(1.2)2 − 1
= 0.07 

𝑐2 =
−𝑢0 𝜔𝑛(𝜁 − √𝜁2 − 1) − 𝑢̇0

2 𝜔𝑛√𝜁2 − 1
=

−0.05 ×  2(1.2 − √(1.2)2 − 1)

2 × 2√(1.2)2 − 1
= −0.02 

𝑢(𝑡) = 0.07𝑒(−1.2+√(1.2)2−1) 2𝑡 − 0.02𝑒(−1.2−√(1.2)2−1) 2𝑡
 

𝑢(𝑡) = 0.07𝑒−1.073𝑡 − 0.02𝑒−3.727𝑡 
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Damped Free Vibration S.D.O.F System 

Example 23: The following system is given. This system includes a massless rigid beam attached 

to a lumped mass at the end of the beam, a spring with coefficient of “k” and damping system with 

coefficient of “c”. The length of the beam L=2m, m=5kg, coefficient of spring k=20N/m, damping 

coefficient c=8 𝑁 − 𝑠
𝑚⁄ . Find the equation of motion and response of system for initial condition 

of 𝑢(0) = 0.03𝑚 & 𝑢̇(0) = 0.2 𝑚/𝑠. 

 
 

Step 1: Free Body Diagram:  

 

 
This system is on static equilibrium position, so we can ignore the force of mg in free body 

diagram. 

We can write the moment for point “A”. 

 

∑ 𝑀𝐴 = 0  

𝐼𝜃̈ + 𝑓𝑐 (
3𝐿

4
) + 𝑓𝑘 (

𝐿

4
) = 0  

𝑓𝑐 = 𝑐𝑢̇ = 𝑐 (
3𝐿

4
) 𝜃̇ = 8 (

3×2

4
) 𝜃̇ = 12 𝜃̇  

𝑓𝑘 = 𝑘𝑢 = 𝑘 (
𝐿

4
) 𝜃 = 20 (

2

4
) 𝜃 = 10 𝜃 

𝐼 = 𝑚𝐿2 = 5 × 22 = 5 × 4 = 20 

 

20 𝜃̈ + 12 𝜃̇ (
3×2

4
) + 10 𝜃 (

2

4
) = 0               20 𝜃̈ + 18 𝜃̇ + 5 𝜃 = 0    Equation of motion        

 
𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 0 



ME 4440-5540 Lecture 18 
 

2 
 

𝑚𝑒𝑞 = 20 , 𝑐𝑒𝑞 = 18,  𝑘𝑒𝑞 = 5 

 

Step 2: Finding the natural frequency of system (𝜔𝑛): 

𝜔𝑛 = √
𝑘𝑒𝑞

𝑚𝑒𝑞
= √

5

20
=

1

2
 
𝑟𝑎𝑑

𝑠
  

 

Step 2: Finding the critical damping coefficient of system (𝑐𝑐): 

𝑐𝑐 = 2𝑚𝑒𝑞𝜔𝑛 = 2 × 20 ×
1

2
 = 20 𝑁 − 𝑠

𝑚⁄   

 

Step 3: Finding the damping ratio of system (𝜁) and find that is related to which damping case: 

𝜁 =
𝑐𝑒𝑞

𝑐𝑐
=

18

20
= 0.9     underdamped 

 

Step 4: Because it is under-damped case, first you have to calculate damped natural frequency 

(𝜔𝑑)): 

𝜔𝑑 = √1 − 𝜁2 𝜔𝑛 =
1

2
 × √1 − 0.92 = 0.218 

𝑟𝑎𝑑

𝑠
 

𝑢(𝑡) = 𝑒−𝜁 𝜔𝑛𝑡 [𝑢0𝑐𝑜𝑠𝜔𝑑𝑡 +
𝑢̇0+𝜁 𝜔𝑛𝑢0

𝜔𝑑
𝑠𝑖𝑛𝜔𝑑𝑡]      General solution for underdamped case 

𝑢(𝑡) = 𝑒−0.9×
1
2

𝑡 [0.03cos (0.218𝑡) +
0.2 + 0.9 ×

1
2

× 0.03

0.218
sin (0.218𝑡)] 

 

𝑢(𝑡) = 𝑒−0.45𝑡[0.03cos (0.218𝑡) + 0.98sin (0.218𝑡)]            Response of system 

 

 

Example 24: The following system is given. This system includes a massless flexible beam 

attached to a lumped mass at the end of the beam and damping system with coefficient of “c”. The 

length of the beam L=2m, m=5kg, damping coefficient c=8 𝑁 − 𝑠
𝑚⁄  and the beam has E=207×

109 𝑃𝑎, I=5× 10−11𝑚4. Find the equation of motion and response of system for initial condition 

of 𝑢(0) = 0.03𝑚 & 𝑢̇(0) = 0.2 𝑚/𝑠. 
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In this case, we have a flexible beam and that means there is not any more relation between angle 

θ, distance from the origin and beam displacement (beam has curve displacement). 

 

Also, we don’t have an obvious spring but the beam act as a vertical spring at point “B”. So, if 

we can move the damping system to the point “B”, then we will have a simple damped system 

which both spring and damper are connected to the mass.  

 

 

In this case, we can use the static deflection of the beam same as what we did in Rayleigh’s 

method (The dynamic displacement would be similar to static displacement). 

From before we had: 

𝑢(𝑥) =
𝑢𝑚𝑎𝑥

2𝐿3
(3 𝑥2𝐿 −  𝑥3) =

𝑢𝐿

2𝐿3
(3 𝑥2𝐿 −  𝑥3) 

𝑢̇(𝑥) =
𝑢̇𝑚𝑎𝑥

2𝐿3
(3 𝑥2𝐿 −  𝑥3) =

𝑢̇𝐿

2𝐿3
(3 𝑥2𝐿 −  𝑥3) 

 

And now: 

𝑓𝑐 = 𝑐𝑢̇ (
3𝐿

4
)      &       𝑓𝑐′ = 𝑐′𝑢̇(𝐿)           
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For ∑ 𝑀𝐴 we can write: 

  𝑐𝑢̇ (
3𝐿

4
) ×

3𝐿

4
= 𝑐′𝑢̇(𝐿) × 𝐿 

𝑢̇ (
3𝐿

4
) =

𝑢̇𝐿

2𝐿3
(3 (

3𝐿

4
)

2

𝐿 −  (
3𝐿

4
)

3

) =
81

128
𝑢̇𝐿  

𝑢̇(𝐿) =
𝑢̇𝐿

2𝐿3
(3 𝐿3 −  𝐿3) = 𝑢̇𝐿  

𝑐′ =
3𝐿

4
×𝑐×

81

128
𝑢̇𝐿

𝐿×𝑢̇𝐿
                                              𝑐′ =

243

512
𝑐 

 

𝑚𝑢̈ + 𝑐′𝑢̇ +
3𝐸𝐼

𝐿3 𝑢 = 0        𝑚𝑢̈ + (
243

512
) 𝑐𝑢̇ +

3𝐸𝐼

𝐿3
𝑢 = 5𝑢̈ + (

243

512
) × 8𝑢̇ +

3×207×109×5×10−11

(2)3
𝑢 = 0      

5𝑢̈ + 3.8 𝑢̇ + (3.9)𝑢 = 0       Equation of motion 

 

𝑚𝑒𝑞 = 5 , 𝑐𝑒𝑞 = 3.8,  𝑘𝑒𝑞 = 3.9 

 

Step 2: Finding the natural frequency of system (𝜔𝑛): 

𝜔𝑛 = √
𝑘𝑒𝑞

𝑚𝑒𝑞
= √

3.9

5
= 0.88

𝑟𝑎𝑑

𝑠
  

 

Step 2: Finding the critical damping coefficient of system (𝑐𝑐): 

𝑐𝑐 = 2𝑚𝑒𝑞𝜔𝑛 = 2 × 5 × 0.88 = 8.8 𝑁 − 𝑠
𝑚⁄   

 

Step 3: Finding the damping ratio of system (𝜁) and find that is related to which damping case: 

𝜁 =
𝑐𝑒𝑞

𝑐𝑐
=

3.8

8.8
= 0.43     underdamped 

 

Step 4: Because it is under-damped case, first you have to calculate damped natural frequency 

(𝜔𝑑)): 

𝜔𝑑 = √1 − 𝜁2 𝜔𝑛 = 0.88 × √1 − 0.432 = 0.79 
𝑟𝑎𝑑

𝑠
 

𝑢(𝑡) = 𝑒−𝜁 𝜔𝑛𝑡 [𝑢0𝑐𝑜𝑠𝜔𝑑𝑡 +
𝑢̇0+𝜁 𝜔𝑛𝑢0

𝜔𝑑
𝑠𝑖𝑛𝜔𝑑𝑡]      General solution for underdamped case 

𝑢(𝑡) = 𝑒−0.43×0.88𝑡 [0.03cos (0.79𝑡) +
0.2 + 0.43 × 0.88 × 0.03

0.79
sin (0.79𝑡)] 

 

𝑢(𝑡) = 𝑒−0.38𝑡[0.03cos (0.79𝑡) + 0.267sin (0.79𝑡)]            Response of system 
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Forced Vibration S.D.O.F System 

 

As it mentioned before, we have different type of forces: A) Harmonic force B) Periodic force C) 

General force (which can be divided to Deterministic and Random forces). In this part we will 

take a look how each of these types of forces act on an Undamped & Damped forced systems.  

 

A) Harmonic Force 

 

A.1) Analyzing an Undamped System That Excited by a Harmonic Force 

 

Look at the following system.  

 

 
 

If a force 𝐹(𝑡) = 𝐹0 𝑐𝑜𝑠𝜔𝑡 act on the mass m of an Undamped system, the equation of motion 

would be: 

 

𝑚𝑢̈ + 𝑘𝑢 = 𝐹0 𝑐𝑜𝑠𝜔𝑡      

 

The total solution for this equation of motion includes two parts: 1) homogeneous solution 

(called transient) which already find for free vibration, and 2) particular solution (called steady 

state). 

𝑢(𝑡)𝑡𝑜𝑡𝑎𝑙 = 𝑢ℎ(𝑡) + 𝑢𝑝(𝑡) 

 

𝑢ℎ(𝑡) = 𝐴1 cos(𝜔𝑛 𝑡) + 𝐴2  𝑠𝑖𝑛 (𝜔𝑛 𝑡) 

 

Because in this case we have a harmonic force, from differential equation we know the particular 

solution also would be harmonic with same frequency of harmonic force (𝝎). 

𝑢𝑝(𝑡) = 𝐴3 cos 𝜔𝑡 

 

We have to find the value of amplitude for steady state response (𝐴3). By substituting 𝑢𝑝 in the 

equation of motion: 

 

Equation of motion 
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𝑚𝑢̈𝑝 + 𝑘𝑢𝑝 = 𝐹0 𝑐𝑜𝑠𝜔𝑡

𝑢̈𝑝 = −𝐴3𝜔2 cos 𝜔𝑡
}           −𝑚𝐴3𝜔2 cos 𝜔𝑡 + 𝑘𝐴3 cos 𝜔𝑡 = 𝐹0 𝑐𝑜𝑠𝜔𝑡 

𝐴3 cos 𝜔𝑡 (−𝑚𝜔2 + 𝑘) = 𝐹0 𝑐𝑜𝑠𝜔𝑡              𝐴3 =
𝐹0 

(𝑘−𝑚𝜔2)
              𝐴3 =

𝐹0 
𝑘

(1−
𝜔2

𝜔𝑛
2)

 

 

In above equation, let’s name the 𝛿𝑠𝑡 =
𝐹0 

𝑘
 static deflection (displacement) which is the 

deflection of the mass under the force 𝐹0 . Also, let’s name the 𝑟 =
𝜔

𝜔𝑛
 frequency ratio. 

 

 
 

𝐴3 =
𝛿𝑠𝑡

(1 − 𝑟2)
 

 

 

So, the particular solution would be: 

 

𝑢𝑝 =
𝛿𝑠𝑡

(1 − 𝑟2)
cos 𝜔𝑡 

 

Note: The initial condition for particular solution: 𝑢𝑝(0) ≠ 0    &   𝑢̇𝑝(0) = 0 

 

And, the total solution would be: 

 

𝑢(𝑡) = 𝐴1 cos(𝜔𝑛 𝑡) +  𝐴2  𝑠𝑖𝑛 (𝜔𝑛 𝑡) +
𝛿𝑠𝑡

(1 − 𝑟2)
cos 𝜔𝑡 

 

 

 

 

 

For the initial condition 𝑢(0) = 𝑢0 & 𝑢̇(0) = 𝑢̇0, 𝐴1 & 𝐴2 would be equal to: 

 

𝐴1 = 𝑢0 −
𝛿𝑠𝑡

(1−𝑟2)
       &      𝐴2 =

𝑢̇0

𝜔𝑛
 

 

×
1

𝑘
 

Depends on natural 

frequency  𝜔𝑛 

Depends on natural 

frequency (𝜔𝑛) and 

force frequency (𝜔) 

Static Displacement Dynamic Displacement 
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𝑢(𝑡) = (𝑢0 −
𝛿𝑠𝑡

(1 − 𝑟2)
) cos(𝜔𝑛 𝑡) +  

𝑢̇0

𝜔𝑛
  𝑠𝑖𝑛 (𝜔𝑛 𝑡) +

𝛿𝑠𝑡

(1 − 𝑟2)
cos 𝜔𝑡 

 

For the initial condition 𝑢(0) = 0 & 𝑢̇(0) = 0, the total response: 

 

𝑢(𝑡) =
𝛿𝑠𝑡

(1 − 𝑟2)
[cos 𝜔𝑡 − cos 𝜔𝑛 𝑡] 

 

The relation between maximum dynamic deformation (𝐴3) and maximum static deformation 

(𝛿𝑠𝑡) would be: 

 

𝐴3

𝛿𝑠𝑡
=

1

(1 − 𝑟2)
 

 

Note: 𝑀 =
1

(1−𝑟2)
 is named magnification factor and the absolute value of that is named 

frequency response function: H(r) =
1

(1−𝑟2)
 

 

  
 

This graph shows, the value of frequency is growing till frequency become close to natural 

frequency of system and 𝑟 = 1, then dynamic response goes to infinity (resonance). Then if the 

frequency still continue growing at 𝑟 = √2 (𝜔 = √2𝜔𝑛) the dynamic response and static 

response become equal and static and dynamic displacement would be equal (This would be 

happened in 𝑟 = 0 too but that means 𝜔 = 0 so basically we don’t have any dynamic forces!). 

With growing 𝑟 more than √2, frequency response function H(r) become closer and closer to 

zero. This means for a large value of frequency of harmonic force (𝜔) the dynamic force will 

make less displacement than static force! So, that means: “Not always the response from a 

dynamic force is worse than the response from a static force.” 

 

 

 

𝐴3

𝛿𝑠𝑡

 

𝑟 =
𝜔

𝜔𝑛

 
√2 
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Forced Vibration S.D.O.F System 

 

Based on value of the frequency ratio of “𝑟” there are three cases: 

 

Case 1: 0 < 𝑟 < 1  

That means 𝐴3 =
𝛿𝑠𝑡

(1−𝑟2)
 become positive and the particular (steady state) response of system (𝑢𝑝) 

and external force are in the same phase and they just have different amplitudes.  

𝑢𝑝(𝑡) = 𝐴3𝑐𝑜𝑠𝜔𝑡 

𝐹(𝑡) = 𝐹0 𝑐𝑜𝑠𝜔𝑡 

 

 

 
 

 

Case 2: 𝑟 > 1  

That means 𝐴3 =
𝛿𝑠𝑡

(1−𝑟2)
 become negative and the particular (steady state) response of system 

(𝑢𝑝) and external force are in the opposite phase (180° out of phase).  

 

 
 

𝑢𝑝(𝑡) = 𝐴3𝑐𝑜𝑠𝜔𝑡 

𝐴3 

𝑢𝑝(𝑡) = 𝐴3𝑐𝑜𝑠𝜔𝑡 

𝐴3 
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Case 3: 𝑟 = 1 and that means 𝜔 = 𝜔𝑛 

In this case, the response of system 𝑢(𝑡) indeterminate form of (
0

0
), so we have to use 

L’Hopital’s rule to solve it. 

 

𝑢(𝑡) =
𝛿𝑠𝑡𝜔𝑛 𝑡

2
sin 𝜔𝑛 𝑡 

 

Here is the plot of this response function. As you can see, the amplitude of this response grows 

linearly and goes to infinity this phenomenon is named resonance. 

 

 
 

Case 3′: 𝑟 ≅ 1 or 𝜔 ≅ 𝜔𝑛, if the harmonic forcing frequency is very close to natural frequency 

of system but they are exactly same. This phenomenon is named beating.  

 

The total response for initial conditions equal zero we had: 

 

𝑢(𝑡) =
𝛿𝑠𝑡

(1 − 𝑟2)
[cos 𝜔𝑡 − cos 𝜔𝑛 𝑡] =

𝐹0 

𝑚(𝜔𝑛
2 − 𝜔2)

[cos 𝜔𝑡 − cos 𝜔𝑛 𝑡] 

 

So, for the case of 𝜔 ≅ 𝜔𝑛, we can write the following equation (𝜀 is very small value):   

 

𝜔𝑛 − 𝜔 = 2𝜀    &    𝜔𝑛 + 𝜔 ≅ 2𝜔           𝜔𝑛
2 − 𝜔2 = (𝜔𝑛 − 𝜔)(𝜔𝑛 + 𝜔) = 2𝜀 × 2𝜔 = 4𝜀𝜔  

 

So, 

𝑢(𝑡) =
𝐹0 

𝑚(𝜔𝑛
2 − 𝜔2)

[−2 sin
𝜔+𝜔𝑛

2
𝑡 . sin

𝜔 − 𝜔𝑛

2
 𝑡] =

𝐹0 

𝑚(𝜔𝑛
2 − 𝜔2)

[2 sin
𝜔+𝜔𝑛

2
𝑡 . sin

𝜔𝑛 − 𝜔

2
 𝑡] 

 

𝑢(𝑡) =
𝐹0 

𝑚(4𝜀𝜔)
[2 sin

2𝜔

2
𝑡 . sin

2𝜀

2
 𝑡] =

𝐹0 

2𝑚𝜀𝜔
[sin 𝜔 𝑡 . sin 𝜀𝑡] 

 

𝑢𝑝(𝑡) 

2 
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𝑢(𝑡) =
𝐹0 sin 𝜀𝑡 

2𝑚𝜀𝜔
(sin 𝜔 𝑡) 

 

 

 

 

The period for sin 𝜀𝑡 would be 𝑇1 =
2𝜋

𝜀
 and the period for sin 𝜔𝑡 would be 𝑇2 =

2𝜋

𝜔
 . Because 𝜀 is 

an very small number, 𝑇1 ≫ 𝑇2. Basically, in this case, we have two signals and when they are in 

phase, their amplitudes add to each other and when they are out of phase they cancel each other 

and this process repeat for each (
𝜋

𝜀
). 

 

 
 

Example 25: In the following system, the springs has coefficient of 𝑘 = 10𝑁/𝑚 and mass of the 

system is equal to 𝑚 = 5𝑘𝑔. A dynamic force, 𝑓(𝑡) = 10 𝑐𝑜𝑠 5𝑡 is applying to this system. For 

initial conditions 𝑢(0) = 0  & 𝑢̇(0) = 0, find the equation of motion and plot the response. 

 

 
 

𝑢(𝑡) = 𝐴1 cos(𝜔𝑛 𝑡) +  𝐴2  𝑠𝑖𝑛 (𝜔𝑛 𝑡) +
𝛿𝑠𝑡

(1−𝑟2)
cos 𝜔𝑡  

Variable 

Amplitude 
Phase  

𝑢(𝑡) 
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Step 1: Let’s find the amplitude of the steady state part of response: 

 

Springs are parallel, so: 

 

𝑘𝑒𝑞 = 𝑘 + 𝑘 = 2𝑘 = 2 × 10 = 20𝑁/𝑚 ,   𝐹0 = 10𝑁  ,     𝜔 = 5 𝑟𝑎𝑑/𝑠     

𝜔𝑛 = √
20

5
= 2 𝑟𝑎𝑑/𝑠  

 

𝛿𝑠𝑡 =
𝐹0 

𝑘𝑒𝑞
=

10

20
= 0.5 𝑚  

𝑟 =
𝜔

𝜔𝑛
=

5

2
= 2.5 > 1             Case 2  

 
𝛿𝑠𝑡

(1−𝑟2)
=

0.5

(1−(2.5)2)
= −0.095    

 

 

Step 2: Finding 𝐴1 & 𝐴2 from initial condition. 

 

𝑢̇(𝑡) = −𝐴1𝜔𝑛 sin(𝜔𝑛 𝑡) +  𝐴2 𝜔𝑛 𝑐𝑜𝑠 (𝜔𝑛 𝑡) − 𝜔
𝛿𝑠𝑡

(1−𝑟2)
sin 𝜔𝑡  

 

𝑢(𝑡) = 𝐴1 cos 2𝑡 +  𝐴2 𝑠𝑖𝑛 2𝑡 − 0.095 cos 5𝑡  

 

𝑢(0) = 𝐴1 − 0.095 = 0               𝐴1 = 0.095 

 

𝑢̇(0) =  𝐴2 𝜔𝑛 = 0                𝐴2 = 0 

 

Step 3: Total response would be equal to: 

 

𝑢(𝑡) = 0.095 cos 2𝑡 − 0.095 cos 5𝑡 

 

Step 4: Two cos function the plot would be look like this: 

 

 
But for more exact sketch, you can plot it in MATLAB. 
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A.2) Analyzing a Damped System That Excited by a Harmonic Force 

 

 

Look at the following system.  

 

 
 

If a force 𝐹(𝑡) = 𝐹0 𝑐𝑜𝑠𝜔𝑡 act on the mass m of a Damped system, the equation of motion 

would be: 

 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝐹0 𝑐𝑜𝑠𝜔𝑡      

 

Or 

 

𝑢̈ + 2𝜁 𝜔𝑛𝑢̇ + 𝜔𝑛
2𝑢 =

𝐹0 

𝑚
𝑐𝑜𝑠𝜔𝑡      

 

The total solution for this equation of motion includes two parts: 1) homogenous solution (called 

transient) which already find for free vibration, and 2) particular solution (called steady state). 

𝑢(𝑡)𝑡𝑜𝑡𝑎𝑙 = 𝑢ℎ(𝑡) + 𝑢𝑝(𝑡) 

 

𝑢ℎ(𝑡) = 𝐴1𝑒−𝜁 𝜔𝑛𝑡cos(𝜔𝑑𝑡 − ∅0) 

 

Because in this case we have a harmonic force, from differential equation we know the particular 

solution also would be harmonic with but not in phase with frequency of the harmonic force 

(𝝎). 

𝑢𝑝(𝑡) = 𝐴3 cos(𝜔𝑡 − ∅) 

 

So in this case, we have to find the value of amplitude for steady state response (𝐴3) and phase 

angle of response (∅). By substituting 𝑢𝑝 in the equation of motion: 

 
𝑚𝑢̈𝑝 + 𝑐𝑢̇𝑝 + 𝑘𝑢𝑝 = 𝐹0 𝑐𝑜𝑠𝜔𝑡

𝑢̈𝑝 = −𝐴3𝜔2 cos(𝜔𝑡 − ∅)

𝑢̇𝑝 = −𝐴3𝜔 sin(𝜔𝑡 − ∅)

}           −𝑚𝐴3𝜔2 cos(𝜔𝑡 − ∅) − 𝑐𝐴3𝜔 sin(𝜔𝑡 − ∅) + 𝑘𝐴3 cos(𝜔𝑡 − ∅) = 𝐹0 𝑐𝑜𝑠𝜔𝑡 

 

𝐴3[(𝑘 − 𝑚𝜔2) cos(𝜔𝑡 − ∅) − 𝑐𝜔 sin(𝜔𝑡 − ∅)] = 𝐹0 𝑐𝑜𝑠𝜔𝑡  

Equation of motion 
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cos(𝜔𝑡 − ∅) = cos 𝜔𝑡 cos ∅ + sin 𝜔𝑡 sin ∅  

sin(𝜔𝑡 − ∅) = sin 𝜔𝑡 cos ∅ − cos 𝜔𝑡 sin ∅  

 

𝐴3[(𝑘 − 𝑚𝜔2)[cos 𝜔𝑡 cos ∅ + sin 𝜔𝑡 sin ∅ ] − 𝑐𝜔[sin 𝜔𝑡 cos ∅ − cos 𝜔𝑡 sin ∅ ]] = 𝐹0 𝑐𝑜𝑠𝜔𝑡  

 

 

Anything in the left side of above equation which is coefficient of cos 𝜔𝑡 would be equal to 𝐹0  

and rest of them (parts Not include𝑠  cos 𝜔𝑡) would be equal to zero. So, we will have: 

 

1) 𝐴3[(𝑘 − 𝑚𝜔2) cos ∅ + 𝑐𝜔 sin ∅ ] = 𝐹0  

 

2) 𝐴3[(𝑘 − 𝑚𝜔2) sin ∅ − 𝑐𝜔 cos ∅] = 0 

 

For finding 𝐴3, square both equations  and add them with each other: 

 

𝐴3
2[(𝑘 − 𝑚𝜔2)2cos2∅ + 𝑐2𝜔2sin2∅ + 2(𝑘 − 𝑚𝜔2)𝑐𝜔 cos ∅ sin ∅] = 𝐹0 

2 

𝐴3
2[(𝑘 − 𝑚𝜔2)2sin2∅ + 𝑐2𝜔2cos2∅ − 2(𝑘 − 𝑚𝜔2)𝑐𝜔 cos ∅ sin ∅] = 0 

 

𝐴3
2[(𝑘 − 𝑚𝜔2)2 + 𝑐2𝜔2] = 𝐹0 

2 

 

𝐴3 =
𝐹0 

√[(𝑘 − 𝑚𝜔2)2 + 𝑐2𝜔2]
=

𝐹0

𝑘

√[(1 − 𝑟2)2 + (2𝜁𝑟)2]
 

  

∅ = 𝑡𝑎𝑛−1 (
𝑐𝜔

𝑘 − 𝑚𝜔2
) = ∅ = 𝑡𝑎𝑛−1 (

2𝜁𝑟

1 − 𝑟2
) 

 

 

Note: (𝑟 = 𝜔/𝜔𝑛  ,   𝜁 =
𝑐

𝑐𝑐
  ,  𝑐𝑐 = 2𝑚𝜔𝑛) 

 

Let’s check this values for an Undamped case (𝜁 = 0): 

 

Amplitude of the steady state response: 

  

𝐴3 =

𝐹0

𝑘
(1 − 𝑟2)

 

 

𝑀 =
1

(1−𝑟2)
     (𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟)           𝐻(𝑟) = |

1

(1−𝑟2)
|     Frequency response function 

 

However this values for a Damped case (𝜁 ≠ 0): 

 

 

+ 

Static displacement 
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𝐴3 =

𝐹0

𝑘

√[(1 − 𝑟2)2 + (2𝜁𝑟)2]
 

 

𝑀 =
1

√[(1−𝑟2)2+(2𝜁𝑟)2]
   (𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟)        |𝐻(𝑟)| =

1

√[(1−𝑟2)2+(2𝜁𝑟)2]
         

 

In this case we have “complex frequency response function: 

 

1

(1 − 𝑟2) + 𝑖2𝜁𝑟
    𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 

The magnitude of this function would be equal to the Magnification factor: 

 

Proof: 

1

(1 − 𝑟2) + 𝑖2𝜁𝑟
×

(1 − 𝑟2) − 𝑖2𝜁𝑟

(1 − 𝑟2) − 𝑖2𝜁𝑟
= (

(1 − 𝑟2)

(1 − 𝑟2)2 + (2𝜁𝑟)2
) − 𝑖 (

2𝜁𝑟

(1 − 𝑟2)2 + (2𝜁𝑟)2
) 

 

The magnitude of it can be find from: √𝐴2 + 𝐵2 

 

√(
(1 − 𝑟2)

(1 − 𝑟2)2 + (2𝜁𝑟)2
)

2

+ (
2𝜁𝑟

(1 − 𝑟2)2 + (2𝜁𝑟)2
)

2

=
1

√[(1 − 𝑟2)2 + (2𝜁𝑟)2]
 

 

The Frequency response function 𝐻(𝑟) can give us lots of information. In this part, we will talk 

about them one by one. 

 

|𝐻(𝑟)| =
1

√[(1−𝑟2)2+(2𝜁𝑟)2]
  

 

1) Undamped system (𝜁 = 0)  

𝑟 = 0               𝐻(𝑟) = 1 

𝑟 = 1               𝐻(𝑟) = ∞ 

𝑟 = √2            𝐻(𝑟) = 1 

𝑟 =  ∞            𝐻(𝑟) = 0 

 

 

Static displacement 

Frequency 

response function 

 

A B 
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2) For Damped system (𝜁 ≠ 0), the Frequency response function 𝐻(𝑟) is dependent on two 

parameters 𝜁 & 𝑟. 

 

2a) For (0 < 𝜁 < 0.707) 

The maximum value of the curves of Frequency response function 𝐻(𝑟) will be change between 

0-1 and as much as the value of 𝜁 increases, the maximum of the curve will be shift more to the 

left of the line 𝑟 = 1 on the graph. 

 

2b) For (0.707 < 𝜁) 

The maximum value of the curves of Frequency response function 𝐻(𝑟) for all value of 𝜁 will be 

on 𝑟 = 0! 

Important Note: Only for 𝟎 < 𝜻 < 𝟎. 𝟕𝟎𝟕 for any system, the maximum dynamic response can 

be larger than corresponding static response! For 𝟎. 𝟕𝟎𝟕 < 𝜻, always dynamic response would 

be less than corresponding static response (except at 𝑟 = 0 which means we have a static case). 

So, in order to decrease the effect of dynamic motion, you need to increase the damping which is 

not always a good idea because the consequence of it would be waste of energies, generating 

heat, etc.  

 

F
r
eq
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n
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ct
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n
 𝑯

( 𝒓
)  

𝑯(𝒓) =
𝟏

𝟐𝜻
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A.2) Analyzing a Damped System That Excited by a Harmonic Force 

 

Mathematical analysis of the graphs: 

For finding the maximum value of the curves, we have to find the roots of “𝑟” for derivative of 

𝐻(𝑟) equal to zero. For constant value of damping we will have: 

𝑑|𝐻(𝑟)|

𝑑𝑟
= 0          

𝑟(1−𝑟2−2𝜁2)

[(1−𝑟2)2+4𝜁2𝑟2]
3

2⁄
= 0               𝑟(1 − 𝑟2 − 2𝜁2) = 0 

So,  

𝑟 = 0                  or                   (1 − 𝑟2 − 2𝜁2) = 0 

1) For 𝑟 = 0 can be maximum or minimum of the graph. For finding if it is the maximum or 

minimum, we need to take the second derivative of 𝐻(𝑟) to see if it is negative (maximum) or 

positive (minimum)! 

𝑑2𝐻(𝑟)

𝑑𝑟2 < 0        Maximum 

𝑑2𝐻(𝑟)

𝑑𝑟2 > 0        Minimum 

If you take the second derivative and put 𝑟 = 0, you will find: 

𝑑2𝐻(𝑟=0)

𝑑𝑟2 = 1 − 2𝜁2                  

For 𝜁 >
√2

2
≅ 0.707    we will have 

𝑑2𝐻(𝑟=0)

𝑑𝑟2 < 0      Maximum 

For 𝜁 <
√2

2
≅ 0.707    we will have 

𝑑2𝐻(𝑟=0)

𝑑𝑟2 > 0      Minimum             

Note: Therefore, for all systems with 𝜁 > 0.707, the dynamic response will never get to 

corresponding static displacement (
𝐹0

𝑘
).      

2) For (1 − 𝑟2 − 2𝜁2) = 0  (𝑟 ≥ 0 always): 

   𝑟 = √1 − 2𝜁2              𝐻(𝑟) =
1

√[(1−𝑟2)2+(2𝜁𝑟)2]
=

1

√[(1−1+2𝜁2)2+4𝜁2(1−2𝜁2)]
=

1

2𝜁√1−𝜁2
  

 

                       𝜁2 become very small number         √1 − 𝜁2 ≈ 1          |𝐻(𝑟)|𝑚𝑎𝑥 ≈
1

2𝜁
 

 

So, the maximum value of 𝐻(𝑟) for 𝜻 ≤ 𝟎. 𝟕𝟎𝟕 would be almost equal to (
1

2𝜁
)! Therefore, if you 

find and plot 𝐻(𝑟) for a system from experiment and measure the height of the maximum 

of the function, then you can calculate and find 𝜁 from (
1

2𝜁
). So, one of the benefit of 

frequency response function 𝐻(𝑟) is finding damping ratio. 𝐻(𝑟)𝑚𝑎𝑥 is named “Quality 

For 𝜻 ≤ 𝟎. 𝟕𝟎𝟕 
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Factor”  and is showing with “Q”. High Q system means systems with low damping and low 
Q systems means systems that have high damping. 
 

 
 

 

Example 26: The following figure showing a structure which is hinged to the floor and supported 

rotating machinery that exerts a force F= 900 cos 5t N. This system has a damping ratio of 𝜁 =

0.05 and mass of 𝑚 = 6800𝑘𝑔. For the beams in this structure, =  207 × 109 𝑃𝑎 ,  𝐼 = 2.88 ×

10−5 𝑚4 , 𝑙 = 5𝑚 and section modulus (
𝐼

𝑐
) = 35 × 10−5 𝑚3. 

a) Find the maximum steady-state displacement.  

b) Find the maximum dynamic bending stress. 

 

 

a)  

First let find the equivalent of stiffness for the beams. The beams are parallel, so: 

𝑘 =
3𝐸𝐼

𝑙3               𝑘𝑡 = 2 ×
3𝐸𝐼

𝑙3 = 2 × 3 ×
207×109×2.88×10−5

125
= 286.157 × 103 𝑁

𝑚
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Then find the equivalent static displacement (𝐴𝑠𝑡) 

𝐴𝑠𝑡 =
𝐹0

𝑘𝑡
=

900

286.157 × 103
= 0.003𝑚 

Now, we can calculate the amplitude or maximum steady-state displacement from following 

equation: 

𝑈𝑚𝑎𝑥 = |𝐻(𝑟)|. 𝐴𝑠𝑡 =

𝐹0

𝑘

√[(1 − 𝑟2)2 + (2𝜁𝑟)2]
 

 

𝜔𝑛 = √
286.157×103

6800
= 6.5 

𝑟

𝑠
     &    𝜔 = 5

𝑟

𝑠
                   𝑟 =

𝜔

𝜔𝑛
=

5

6.5
= 0.77 

 

 

𝑈𝑚𝑎𝑥 =
0.003𝑚

√[(1 − (0.77)2)2 + (2 × 0.05 × 0.77)2]
= 0.007𝑚 

 

As you can see the maximum steady-state dynamic displacement is larger than static 

displacement in this case. 

 

𝑈𝑚𝑎𝑥 > 𝐴𝑠𝑡 
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b)  

What is this force on the beam? Because the force is perpendicular to the beam, so it is a shear 

force (V)! 

 

Maximum shear force can be find from following equation: 

𝐹𝑚𝑎𝑥 = 𝑉𝑚𝑎𝑥 = 𝑘 × 𝑈𝑚𝑎𝑥 =
3𝐸𝐼

𝑙3
× 𝑈𝑚𝑎𝑥 

 

𝑉𝑚𝑎𝑥 = 143.078 × 103 × 0.007 = 1001.5 𝑁 

 

Note: From mechanic of material:  𝑀𝑚𝑎𝑥 = 𝑉𝑚𝑎𝑥 × 𝑙  
 

 
 

𝑀𝑚𝑎𝑥 = 𝑉𝑚𝑎𝑥 × 𝑙 = 1001.5 × 5 = 5007.5 𝑁. 𝑚 
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From mechanics of material bending stress can be find from 𝜎 =
𝑀×𝑦

𝐼
=

𝑀×𝑐

𝐼
 

 

 

 

 

 

 

 

 

Maximum bending stress would be equal to: 

 

𝜎𝑚𝑎𝑥 =
𝑀𝑚𝑎𝑥

𝐼/𝑐
=

5007.5

35 × 10−5
= 1.43 ∗ 10^7 𝑃𝑎 

 

 

c 

Cross section of beam 
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A.2) Analyzing a Damped System That Excited by a Harmonic Force 

 

Rotating Unbalance 

 

Rotating unbalance damped system is one of the special cases of the harmonically excited 

mechanical systems. In general, most of the systems are subjected to some kind of harmonic 

excitation (e.g. engine of the cars, jet engines, rotating machineries, etc.). If the center of mass 

and center of rotation do not coincide, that will be the rotating unbalance case. To know about 

importance of this topic, for instance the breakage of only one turbine blade of a jet engine 

causes a huge rotating unbalance and causes the total failure of the system! 

 

Example 27: The following figure is showing a supported beam that holding a rotating 

machinery (has a rotating component). The rotating part has a frequency of 𝜔. There is a small 

eccentric mass (𝑚𝑒) on the rotating part when the center of rotation and center of this mass are 

not coincide (they have a distance of “𝑒”). The total mass of the rotating part is (𝑚 − 𝑚𝑒). (The 

beam is assumed massless) 

 

 
 

Without (𝑚𝑒) this example was a harmonic excited damped system which we studied before. 

This beam can be shown with spring-damp system, where the 𝑘 is the stiffness of the beam and 𝑐 

is given. 

 

 
So, whole structure can be model like this: 

Beam 
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In this case additional to the rotation part which experience a displacement of 𝑢(𝑡), (𝑚𝑒) is 

experiences a displacement of 𝑑 = 𝑢(𝑡) + 𝑒 𝑠𝑖𝑛 𝜔𝑡 

 

Free body diagram would be: 

 

 
Write the equation of motion for the system: 

 

(𝑚 − 𝑚𝑒)𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 + 𝑚𝑒

𝑑2

𝑑𝑡2
(𝑢 + 𝑒 𝑠𝑖𝑛 𝜔𝑡) = 0 

𝑚𝑢̈ − 𝑚𝑒𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 + 𝑚𝑒𝑢̈ − 𝑚𝑒𝑒𝜔2 𝑠𝑖𝑛 𝜔𝑡 = 0 

 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝑚𝑒𝑒𝜔2 𝑠𝑖𝑛 𝜔𝑡         

 

 

There are some observation from the equation of motion for rotating unbalanced system. 

𝑚𝑒𝑒𝜔2 = constant, so the right side of this equation is very similar to 𝐹0 sin  𝜔𝑡. We can say that 

is a harmonically excited system with amplitude of forcing function equal to (𝑚𝑒𝑒𝜔2) or the 

amplitude of the forcing function is dependent on the frequency (𝜔). 

 

If we write  𝐹0 = 𝑚𝑒𝑒𝜔2, then 𝑈𝑚𝑎𝑥 would be: 

Equation of motion 
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𝑈𝑚𝑎𝑥 =

𝐹0

𝑘

√[(1 − 𝑟2)2 + (2𝜁𝑟)2]
=

𝑚𝑒𝑒𝜔2

𝑘

√[(1 − 𝑟2)2 + (2𝜁𝑟)2]
 

 

𝑈𝑚𝑎𝑥 =

𝑚𝑒𝑒𝜔2

𝑘
×

𝜔𝑛
2

𝜔𝑛
2

√[(1 − 𝑟2)2 + (2𝜁𝑟)2]
=

(
𝑚𝑒𝑒

𝑚 ) 𝑟2

√[(1 − 𝑟2)2 + (2𝜁𝑟)2]
 

 

If we compare the results with a damped harmonic excited system: 

 

For a general harmonically excited damped system: 

 

Forcing function: 𝑓(𝑡) = 𝐹0 𝑠𝑖𝑛 𝜔𝑡  

Frequency response function: |𝐻(𝑟)| =
1

√[(1−𝑟2)2+(2𝜁𝑟)2]
 

Maximum steady-state response: 𝑈𝑚𝑎𝑥 = |𝐻(𝑟)| ×
𝐹0

𝑘
 

 

For a rotating unbalance damped system: 

 

Forcing function: 𝑓(𝑡) =  𝑚𝑒𝑒𝜔2 𝑠𝑖𝑛 𝜔𝑡  (The amplitude of forcing function is frequency 

dependent in this case) 

Frequency response function: |𝐻(𝑟)| =
𝑟2

√[(1−𝑟2)2+(2𝜁𝑟)2]
 

Maximum steady-state response: 𝑈𝑚𝑎𝑥 =
𝑚𝑒𝑒𝜔2

𝑘

√[(1−𝑟2)2+(2𝜁𝑟)2]
=

(
𝑚𝑒𝑒

𝑚
)𝑟2

√[(1−𝑟2)2+(2𝜁𝑟)2]
 

 

 

Or 

General harmonically 

excited damped system 

Rotating unbalance 

damped system 

𝜁 < 0.707 𝜁 < 0.707 
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As you can see from the graphs, the general harmonically excited damped system & the rotating 

unbalance damped system are completely different.  

In the rotating unbalance damped system: 

1) In this case, the peaks of the functions instead of being on the left of the r=1 are on the right 

of the r=1. So, if the peak is on the right of r=1, that means there is an unbalance in the 

system! That is how they find the unbalance in the tires/wheels of vehicle.  

2) As damping ratio (𝜁) increases, the peaks are shift further to the right of the 𝑟 = 1. 

3) If 𝑟 → ∞           |𝐻(𝑟)| →
𝑟2

𝑟2 = 1    , This means (for 𝜁 < 0.707 & 𝑟 > 1) there is no way under 

rotation unbalance system that you can get below the maximum static displacement! At the 

time that the forcing frequency become so much larger then natural frequency of system 

(𝜔 ≫ 𝜔𝑛), at best you would approach the static displacement! 

4) For 𝑟 = 0          |𝐻(𝑟)| = 0  (no matter what is the value of 𝜁) 

  

Exercise: Find the maximum values for the peaks on the rotating unbalance damped system and 

show why they are shifting to the right of 𝑟 = 1 with increasing value of 𝜁 (for 𝜁 < 0.707). 

Example 28: The following figure is showing a supported beam that holding a rotating machinery 

(laundry machine). The rotating part has a frequency of 𝜔 and mass of 𝑚 =7250kg. For the beam 

in this structure, =  207 × 109 𝑃𝑎 ,  𝐼 = 5 × 10−5 𝑚4 , 𝑙 = 3.5𝑚. The motor has a speed of 300 

rpm. There is a small eccentric mass (𝑚𝑒 = 20𝑘𝑔) on the rotating part that the center of rotation 

and center of this mass are not coincide (they have a distance of 𝑒 = 0.25𝑚). The damping ratio 

of the system is 𝜁 = 10%. The beam is assumed massless. Find the maximum displacement of the 

system 𝑈𝑚𝑎𝑥? 

 
 

𝑈𝑚𝑎𝑥 =?                     

𝑈𝑚𝑎𝑥 =
𝑚𝑒𝑒𝜔2

𝑘

√[(1−𝑟2)2+(2𝜁𝑟)2]
  

𝑟 =?   
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𝜔 = 300 𝑟𝑝𝑚 ×
2𝜋

60
= 31.4 

𝑟𝑎𝑑

𝑠
  

𝑘 =
48 𝐸𝐼

𝑙3 =
48×207×109× 5×10−5

(3.5)3 =
49680×104

42.875
= 11.6 × 106 𝑁

𝑚
  

𝜔𝑛 = √
𝑘

𝑚
= √

11.6×106

7250
= 40 

𝑟𝑎𝑑

𝑠
  

 

𝑟 =
𝜔

𝜔𝑛
=

31.4

40
= 0.785  

 

𝑈𝑚𝑎𝑥 =
𝑚𝑒𝑒𝜔2

𝑘

√[(1−𝑟2)2+(2𝜁𝑟)2]
=

20×0.25×31.42

11.6×106

√[(1−(0.785 )2)2+(2×0.1×0.785 )2]
=

4.25×10−4

0.414
= 0.001 𝑚  

 

So, for just a very small unbalance mass compare to the total mass causes 1mm displacement! 

(
20

7250
× 100 = 0.27% of total weight) 
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A.2) Analyzing a Damped System That Excited by a Harmonic Force 

 

Time Dependent Input Displacement 

 

This is a special case of damped (or Undamped) systems and instead of system be subjected to 

an external force, the base of system is subjected to a displacement (e.g. earthquake). Input 

displacement doesn’t have to be necessarily harmonic but here we are discussing the harmonic 

and later we will discuss a general case. 

 

 
 

𝑧 = 𝑢 + 𝑦  

 

We can write the equation of motion in term of “u”: 

 

𝑚𝑧̈ + 𝑐𝑢̇ + 𝑘𝑢 = 0               𝑚𝑢̈ + 𝑚𝑦̈ + 𝑐𝑢̇ + 𝑘𝑢 = 0             𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = −𝑚𝑦̈        

   

This way would be good for civil engineers because usually the earthquake input measure 

respect to the ground moving acceleration.     

 

Also, we can write the equation of motion in term of “z”: 

 

𝑢 = 𝑧 − 𝑦  

 

𝑚𝑧̈ + 𝑐𝑢̇ + 𝑘𝑢 = 0               𝑚𝑧̈ + 𝑐𝑧̇ − 𝑐𝑦̇ + 𝑘𝑧 − 𝑘𝑦 = 0             𝑚𝑧̈ + 𝑐𝑧̇ + 𝑘𝑧 = 𝑐𝑦̇ + 𝑘𝑦          

 

This way would be good for mechanical cases where usually we are dealing with an input 

displacement.  

If we want to write these equations as the form of the forced vibration, we will have: 
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𝑓(𝑡) = {
−𝑚𝑦̈

𝑐𝑦̇ + 𝑘𝑦
    or 

Example 29: Let’s consider that a car is travelling on a road with roughness in shape of sinusoidal 

function. The amplitude of the roughness for the surface of the road is 𝑦 = 𝑌 sin  2𝜋
𝑥

𝑙
  (“𝑙” is one 

period for the wave of the road). The car is modeled as an Undamped SDOF system (𝑐 = 0). This 

car travelling in 𝑥 direction with constant speed “𝑣”. Find the most undesirable speed. 

 

 
 

When the most undesirable speed will be happened? In case of resonance (When the input 

frequency (𝜔) and natural frequency of the system (𝜔𝑛) become equal and 𝑟 = 1) 

 

 

 

The equation of motion would be: 

𝑚𝑧̈ + 𝑘𝑧 = 𝑘𝑦 = 𝑘𝑌 sin  2𝜋
𝑥

𝑙
 

  

Velocity is constant           𝑥 = 𝑣. 𝑡             2𝜋
𝑥

𝑙
=

2𝜋𝑣𝑡

𝑙
= 𝜔𝑡               𝜔 =

2𝜋𝑣

𝑙
 

 

 

𝜔𝑛 = √
𝑘

𝑚
= √

𝑘𝑔

𝑊
 

 

 

𝜔𝑛 = 𝜔             √
𝑘𝑔

𝑊
=

2𝜋𝑣

𝑙
             𝑣 =

𝑙

2𝜋
√

𝑘𝑔

𝑊
            The most undesirable speed 
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Example 30: The following system is supported at both sides with walls. The wall at the right side 

subjected to a displacement 𝑦(𝑡) = 0.1 𝑠𝑖𝑛 𝑡. In this system, 𝑚 = 1 𝑘𝑔, 𝑘 = 1
𝑁

𝑚
, 

𝑐2 = 2 𝑁 − 𝑠
𝑚⁄ , and 𝜁 = 0.2. Find the maximum displacement that the mass experience (𝑈𝑚𝑎𝑥). 

 

 
 

Free body diagram: 

 

 
Equation of motion: 

−𝑚𝑢̈ + 𝑐2(𝑦̇ − 𝑢̇) − 𝑘𝑢 − 𝑐1𝑢̇ = 0 

 

𝑚𝑢̈ + (𝑐1 + 𝑐2)𝑢̇ + 𝑘𝑢 = 𝑐2𝑦̇ 

 

We don’t have value of 𝑐1 but damping ratio is given (𝜁 = 0.2). So, we can divide both side of 

equation by “𝑚” and we will have: 

 

(Note:  𝑐𝑡𝑜𝑡𝑎𝑙 = 𝑐1 + 𝑐2           𝜁 =
𝑐

2𝑚𝜔𝑛
            

𝑐

𝑚
= 2𝜁𝜔𝑛 ) 

 

𝑢̈ + 2𝜁𝜔𝑛𝑢̇ + 𝜔𝑛
2𝑢 =

𝑐2

𝑚
𝑦̇ 

𝜔𝑛 = √
𝑘

𝑚
= √

1

1
= 1 ,  𝜁 = 0.2  ,   𝑐2 = 2   ,   𝑚 = 1  ,      𝑦 = 0.1 𝑠𝑖𝑛 𝑡          𝑦̇ = 0.1 𝑐𝑜𝑠 𝑡           
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𝑢̈ + 0.4𝑢̇ + 1𝑢 = 0.2 𝑐𝑜𝑠 𝑡 

 

𝑓(𝑡) = 0.2 𝑐𝑜𝑠 𝑡 

 

 

 

𝑈𝑚𝑎𝑥 =
𝐹0

𝑘
|𝐻(𝑟)|𝑚𝑎𝑥 =

𝐹0

𝑘
×

1

√[(1 − 𝑟2)2 + (2𝜁𝑟)2]
=

0.2

1
×

1

√[(1 − 1)2 + (2 × 0.2 × 1)2]
 

 

𝑈𝑚𝑎𝑥 =
0.2

0.4
= 0.5 𝑚 

 

 

Equation of motion 

𝐹0 
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A.2) Analyzing a Damped System That Excited by a Harmonic Force 

 

Transmissibility Ratio (TR) 

 

Till now we discussed about systems which are subjected to a force or a displacement. But we 

want to know, what is the effect of this force or displacement on our system to protect the system 

from undesirable vibrations.       

 

Transmissibility Ratio (TR): It is a quantity that measures the impact of the Force or Displacement 

acting on a system. 

Case 1: Force Transmitted 

If we have a force acting on the system, it causes the system displacement, so the structure supports 

which are “k” and “c”  as a result of that displacement would be subjected the transmitted force  

(𝑓𝑇).  

 

𝑓𝑇 = 𝑘𝑢 + 𝑐𝑢̇ 

 

 
In the case of force acting on the system, we define Transmissibility Ratio (TR) as: 

 

𝑇𝑅 =
𝑀𝑎𝑥 𝐹𝑜𝑟𝑐𝑒 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝑀𝑎𝑥 𝐹𝑜𝑟𝑐𝑒 𝐴𝑝𝑝𝑙𝑖𝑒𝑑
=
𝑘𝑢 + 𝑐𝑢̇

𝐹0
 

For a harmonic force: 

 

𝑓(𝑡) = 𝐹0 𝑠𝑖𝑛 𝜔𝑡 

𝑢(𝑡) =
𝐹0
𝑘
𝐻(𝑟) 𝑠𝑖𝑛 (𝜔𝑡 − 𝜃) 

𝑢̇(𝑡) =
𝐹0
𝑘
𝐻(𝑟) 𝜔 𝑐𝑜𝑠 (𝜔𝑡 − 𝜃) 

𝑓𝑇 = 𝑘 × 𝑢𝑚𝑎𝑥 + 𝑐 × 𝑢̇𝑚𝑎𝑥 = 𝑘 ×
𝐹0
𝑘
𝐻(𝑟) 𝑠𝑖𝑛 (𝜔𝑡 − 𝜃) + 𝑐 ×

𝐹0
𝑘
𝐻(𝑟) 𝜔 𝑐𝑜𝑠 (𝜔𝑡 − 𝜃) 

 

𝑓𝑇 = 𝐹0 𝐻(𝑟) 𝑠𝑖𝑛 (𝜔𝑡 − 𝜃) + 𝐹0𝐻(𝑟) 
𝑐𝜔

𝑘
 𝑐𝑜𝑠 (𝜔𝑡 − 𝜃) 

 

 

Structure supports 

𝐴1 𝐴2 
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𝑓𝑇 = √𝐴1
2 + 𝐴2

2  

(

 
𝐴1

√𝐴1
2 + 𝐴2

2

𝑠𝑖𝑛 (𝜔𝑡 − 𝜃) + 
𝐴2

√𝐴1
2 + 𝐴2

2

  𝑐𝑜𝑠 (𝜔𝑡 − 𝜃)

)

  

 

 

 

(𝑓𝑇)𝑚𝑎𝑥 = 𝐹0 𝐻(𝑟)√1 +
𝑐2𝜔2

𝑘2
 

 

𝑇𝑅 =
(𝑓𝑇)𝑚𝑎𝑥
𝐹0

=
𝐹0 𝐻(𝑟)√1 +

𝑐2𝜔2

𝑘2

𝐹0
= 𝐻(𝑟)√1 +

𝑐2𝜔2

𝑘2
 

 

𝐻(𝑟) =
1

√[(1−𝑟2)2+(2𝜁𝑟)2]
       

 
𝑐2𝜔2

𝑘2
×
𝜔𝑛

2

𝜔𝑛2
×
4

4
= 4

𝑐2

4𝑘𝑚
× 𝑟2 = 4𝜁2𝑟2  

 

Note: 𝜁 =
𝑐

2√𝑘𝑚
  

 

𝑇𝑅 = √
1+4𝜁2𝑟2

(1−𝑟2)2+(2𝜁𝑟)2
       

 

This is showing the ratio of maximum force that the supports of a system experience to the 

maximum harmonic force that acts on the system.   

 

 

 

 

 

 

 

 

 

 

The following plot showing the Force Transmissibility Ratio function. We care about the case 

𝜁 < 0.707 because for 𝜁 > 0.707 we know the dynamic displacement is always less than static 

displacement. 

(𝑓𝑇)𝑚𝑎𝑥 

𝜁2 
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Following observation from this plot: 

 

- All curves go through 𝑟 = √2 and intersect on that point 

- 𝑇𝑅 < 1       Only if        𝑟 > √2,    That means in order to reduce the unpleasant effect of 

a forcing function on your system, you have to make sure always 𝜔 > √2 𝜔𝑛 

- For 𝑟 > √2 as damping ratio increases, TR increases too. That means, we want to have a 

system less damped in order to less force transmitted to the system.   

- For having 𝑟 > √2 , the best way is having system with smaller natural frequency  

(𝜔𝑛 = √
𝑘

𝑚
). Because in most of the cases, we don’t have much control over the mass so 

we need system with smaller stiffness (𝑘). So, softer system better absorb the force but 

then you will have larger static displacement (𝛿 =
𝑊

𝑘
)! Therefore, vibration isolation is a 

balancing act that you need to find out what is your optimum stiffness (𝑘) value. 

 

 

 

 

Example 31: The following figure is showing a supported beam that holding a rotating machinery 

with a weight of 𝑀 = 500 𝑘𝑔 and frequency of 𝜔 = 7200 𝑟𝑝𝑚. This system has an unbalanced 

mass with 𝑚𝑒 = 1 𝑔 and 𝑒 = 20 𝑐𝑚.The damping ratio of the system is negligible (𝜁 = 0). Design 

an isolation system that assures the force transmitted (𝑓𝑇) is less than 250N? 

T
ra

n
sm

is
si

b
il
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y
 R
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 (
T

R
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𝑇𝑅 =
𝑀𝑎𝑥 𝐹𝑜𝑟𝑐𝑒 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝑀𝑎𝑥 𝐹𝑜𝑟𝑐𝑒 𝐴𝑝𝑝𝑙𝑖𝑒𝑑
= |

1

𝑟2 − 1
| 

 

𝑀𝑎𝑥 𝐹𝑜𝑟𝑐𝑒 𝐴𝑝𝑝𝑙𝑖𝑒𝑑: This an unbalanced system, so, maximum applied force would be:   

 

𝐹0 = 𝑚𝑒𝑒𝜔
2 

 

𝑀𝑎𝑥 𝐹𝑜𝑟𝑐𝑒 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑: That is given by problem equal to 250 N. 

 

So, we will have: 

250

𝑚𝑒𝑒𝜔2
= |

1

𝑟2 − 1
| 

 

𝜔 = 7200 𝑟𝑝𝑚 ×
2𝜋

60
= 754 

𝑟𝑎𝑑

𝑠
 ,  𝑚𝑒 = 0.001 kg ,  𝑒 = 0.2 𝑚 

 
250

0.001×0.2×(754)2
=

250

113.7
= 2.2 = |

1

𝑟2−1
|                       𝑟 = 1.2 

 

𝑟 =
𝜔

𝜔𝑛
             1.2 =

754

𝜔𝑛
            𝜔𝑛 = 628.3

𝑟𝑎𝑑

𝑠
 

 

So, for having force transmitted (𝑓𝑇) less than 250N, the support system (beam) need to have a 

natural frequency of 𝜔𝑛 = 628.3
𝑟𝑎𝑑

𝑠
. Based on this natural frequency, we can find the stiffness 

of the system. 

 

𝜔𝑛 = √
𝑘

𝑚
              628.3 = √

𝑘

500
              𝑘 = 1.9 × 108  

𝑁

𝑚
 

 

However, we have to make sure, system with this stiffness not make a large static displacement. 

 

𝛿 =
𝑊

𝑘
=
500 × 9.81

1.9 × 108
= 2.6 × 10−5 𝑚 

 

𝜁 = 0 
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The displacement is very small and almost negligible. That means this stiffness (𝑘) is acceptable 

for the system. 
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A.2) Analyzing a Damped System That Excited by a Harmonic Force 

Example 32: The following figure is showing a supported beam that holding a cylinder-piston 

machinery with a weight of 𝑀 = 1750 𝑘𝑔 and frequency of 𝜔 = 60 
𝑟𝑎𝑑

𝑠
. The properties of the 

beam are, =  207 × 109 𝑃𝑎 ,  𝐼 = 5 × 10−5 𝑚4 , 𝑙 = 3 𝑚. This machinery generate a harmonic 

force with amplitude 𝐹0 = 32000 𝑁. The damping ratio of the system is 𝜁 = 10%.  

a) Find the amplitude (maximum displacement) of the motion 

b) Find the force transmitted to the beam   

 

 
a)  

This is simply supported beam, so: 

 

𝑘 =
48 𝐸𝐼

𝑙3
=

48 × 207 × 109 × 5 × 10−5

27
= 18.4 × 106  

𝑁

𝑚
 

 

𝜔𝑛 = √
𝑘

𝑚
= √

18.4 × 106

1750
= 102.5 

𝑟𝑎𝑑

𝑠
 

 

𝜁 = 0.1    ,    𝑟 =
𝜔

𝜔𝑛
=

60

102.5
= 0.585 

 

𝑈𝑚𝑎𝑥 = (
𝐹0

𝑘
) 𝐻(𝑟) = (

𝐹0

𝑘
)

1

√[(1−𝑟2)2+(2𝜁𝑟)2]
= (

32000

18.4×106
)

1

√[(1−0.5852)2+(2×0.1×0.585)2]
= 2.6 × 10−3 𝑚       

 

b)  

 

𝑇𝑅 = √
1+4𝜁2𝑟2

(1−𝑟2)2+(2𝜁𝑟)2
= √

1+4×0.12×0.62

(1−0.62)2+(2×0.1×0.6)2
= 1.547       

 

𝑇𝑅 =
𝑀𝑎𝑥 𝐹𝑜𝑟𝑐𝑒 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝑀𝑎𝑥 𝐹𝑜𝑟𝑐𝑒 𝐴𝑝𝑝𝑙𝑖𝑒𝑑
=

(𝑓𝑇)𝑚𝑎𝑥

𝐹0
 

 

(𝑓𝑇)𝑚𝑎𝑥 = 𝑇𝑅 × 𝐹0 = 1.547 × 32000 = 49504 𝑁 

 

M 
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As you can see, this machinery with weight of 1750 𝑘𝑔 (≅ 17500𝑁), if it operates at the 

frequency of 𝜔 = 60 
𝑟𝑎𝑑

𝑠
, the system experiences almost three times higher force than the weight 

of machine!  

 

Case 2: Input Displacement Transmitted 

 

𝑇𝑅 =
𝑀𝑎𝑥 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝑀𝑎𝑥 𝐼𝑛𝑝𝑢𝑡 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
 

 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = −𝑚𝑦̈ 

 

Let’s assume the system experiences a harmonic displacement: 

𝑦 = 𝑌 sin  𝜔𝑡 

 

 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝑚𝜔2 𝑌 sin  𝜔𝑡 

 

 

 

 

If we solve for 𝑢(𝑡), we will have: 

 

𝑢(𝑡) = (
𝐹0

𝑘
) 𝐻 𝑠𝑖𝑛 (𝜔𝑡 − 𝜃) = (

𝑚𝜔2 𝑌

𝑘
) 𝐻 𝑠𝑖𝑛 (𝜔𝑡 − 𝜃)  

 

 

The absolute displacement would be: 

 

Absolute displacement = 𝑢(𝑡) + 𝑦(𝑡) 

 

If you are going to the same process as we did for the force transmitted case, you can see the 

transmissibility ratio will be exactly same as previous case and it has an identical expression! 

 

𝑇𝑅 = √
1+4𝜁2𝑟2

(1−𝑟2)2+(2𝜁𝑟)2   

 

Note: The goal is keep the “𝑇𝑅” less than “1” for the systems! 

 

 

 

Half Power Method 

Equation of motion 

Maximum Input 

Displacement (𝐹0) 
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If you remember, we used 𝐻(𝑟)  plot and quality (Q) (which was equal to 𝐻(𝑟)𝑚𝑎𝑥 = 
1

2𝜁
 ) to find 

damping ratio (𝜁). The “Half Power Method” is another approach for finding the damping ratio 

(𝜁). 

 

The frequency response function is not smooth like that is showing in the graphs and usually it is 

full of noises. So, finding the exact maximum value of the graph would be hard and using 

estimation is not very accurate. 

 

Let’s assume we can find 
𝐻𝑚𝑎𝑥

√2
 and draw a line to cross the graph (where the graph is smoother). 

Find the frequency ratio (r) for two intersection points. In this method, we are using these (r) values 

to calculate and find the peak of the graph and damping ratio.   

 

 
 

For finding 𝑟1 & 𝑟2, we can solve the following equation and roots of that equation will be 𝑟1 & 

𝑟2 values: 

 

𝐻𝑚𝑎𝑥 =
1

2𝜁
              

1

√2
×

1

2𝜁
=

1

√[(1−𝑟2)2+(2𝜁𝑟)2]
 

 

𝑟1
2 = 1 − 2𝜁2 − 2𝜁√1 + 𝜁2 

𝑟2
2 = 1 − 2𝜁2 + 2𝜁√1 + 𝜁2 

 

We know the damping is very small (𝜁 ≪ 1), so, 𝑟1 & 𝑟2 can write as: 

 

𝑟1
2 ≅ 1 − 2𝜁2 − 2𝜁 

𝑟2
2 ≅ 1 − 2𝜁2 + 2𝜁 

 

 

With a good approximation 𝑟1 & 𝑟2 will be equal to: 
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𝑟1 ≅ 1 − 𝜁2 − 𝜁 

𝑟2 ≅ 1 − 𝜁2 + 𝜁 

 

The value of 𝜁 can be find from subtracting these two equations from each other. 

 

𝑟2 − 𝑟1 = 2𝜁 

 

𝜁 =
1

2
(𝑟2 − 𝑟1) 
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B) Periodic Force 

 

In the real life there are many cases that system is subjected to a periodic force. In reality a true 

harmonic excitation is very rare and mostly exist and study on the laboratories. 

 

In reality you can see many situations that the forcing function is periodic and repeated by period 

of “T” but it is not harmonic! 

 

 
 

For any periodic functions, we can find a proper Fourier series (include summation of large number 

of harmonic terms) that reproduce the periodic function. In other words, a periodic function can 

be find by summation of lots of harmonic functions as a Fourier series. 

 

 

In general, if we have a periodic function with period of (T) and frequency of 𝜔 =
2𝜋

𝑇
, Fourier 

series represent this function can be write as follow: 

 

𝑓(𝑡) = 𝑎0 + 𝑎1𝑐𝑜𝑠 𝜔𝑡 + 𝑎2𝑐𝑜𝑠 2𝜔𝑡 + 𝑎3𝑐𝑜𝑠 3𝜔𝑡 + ⋯ + 𝑎𝑛𝑐𝑜𝑠 𝑛𝜔𝑡 + 𝑏1𝑠𝑖𝑛 𝜔𝑡 + 𝑏2𝑠𝑖𝑛 2𝜔𝑡

+ 𝑏3𝑠𝑖𝑛 3𝜔𝑡 + ⋯ + 𝑏𝑛𝑠𝑖𝑛 𝑛𝜔𝑡  
 

For any periodic function, we only need to find all proper coefficients for above Fourier series (𝑎0, 

𝑎1, 𝑎2, …, 𝑎𝑛, 𝑏1, 𝑏2, …, 𝑏𝑛). Then, that periodic function would be converted to a summation of 

series of harmonic functions. 

Harmonic Function 

Periodic Functions 

T 
T 

T 
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This Fourier series can be write as: 

 

𝑓(𝑡) = 𝑎0 + ∑[𝑎𝑛𝑐𝑜𝑠 𝑛𝜔𝑡 + 𝑏𝑛𝑠𝑖𝑛 𝑛𝜔𝑡 ]

∞

𝑛=1

 

 

For the Fourier series, 𝑎0, 𝑎𝑛, 𝑏𝑛 would be: 

 

𝑎0 =
1

𝑇
 ∫ 𝑓(𝑡)

𝑇

0
𝑑𝑡            

 

𝑎𝑛 =
2

𝑇
 ∫ 𝑓(𝑡)𝑐𝑜𝑠 𝑛𝜔𝑡 

𝑇

0
𝑑𝑡  

 

𝑏𝑛 =
2

𝑇
 ∫ 𝑓(𝑡)𝑠𝑖𝑛 𝑛𝜔𝑡 

𝑇

0
𝑑𝑡  

 

So, for any problem, only we need to insert any given periodic function and period of (𝑇) in these 

equations, find these coefficients and apply them in Fourier series.  

 

Example 33: The following graph showing a periodic function. Find the proper Fourier series 

which is representing this function. 

 

 
 

Step1: The first step in solving a problem like this is finding the 𝑓(𝑡) from the given graph. 

 

𝑓(𝑡) = {
1          0 < 𝑡 < 𝑇/2

−1        𝑇/2 < 𝑡 < 𝑇 
 

Step2: find the coefficients  

 

As this function is discontinues, we have to break the integral. 
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𝑎0 =
1

𝑇
 ∫ 𝑓(𝑡)

𝑇

0
𝑑𝑡 =

1

𝑇
 [∫ 1

𝑇
2⁄

0
𝑑𝑡 + ∫ −1

𝑇
𝑇

2⁄
𝑑𝑡] =

1

𝑇
 [

𝑇

2
− (𝑇 −

𝑇

2
)] = 0            

 

𝑎𝑛 =
2

𝑇
 ∫ 𝑓(𝑡)𝑐𝑜𝑠 𝑛𝜔𝑡 

𝑇

0
𝑑𝑡 =

2

𝑇
 [∫ 1. 𝑐𝑜𝑠 𝑛𝜔𝑡

𝑇
2⁄

0
𝑑𝑡 + ∫ −1 . 𝑐𝑜𝑠 𝑛𝜔𝑡

𝑇
𝑇

2⁄
𝑑𝑡]  

 

𝑎𝑛 =
2

𝑇
 [

1

𝑛𝜔
 𝑠𝑖𝑛 𝑛𝜔𝑡|

𝑇
2⁄

0
−

1

𝑛𝜔
 𝑠𝑖𝑛 𝑛𝜔𝑡|

𝑇    
𝑇

2⁄ ] 

 

𝑎𝑛 =
2

𝑇
 [

1

𝑛𝜔
 𝑠𝑖𝑛 𝑛𝜔

𝑇

2
−

1

𝑛𝜔
 (𝑠𝑖𝑛 𝑛𝜔𝑇 − 𝑠𝑖𝑛 𝑛𝜔

𝑇

2
)] =

2

𝑛𝜔𝑇
[2 𝑠𝑖𝑛 𝑛𝜔

𝑇

2
− 𝑠𝑖𝑛 𝑛𝜔𝑇]  

 

𝑎𝑛 =
2

𝑛𝜔𝑇
[2 𝑠𝑖𝑛 𝑛

2𝜋

𝑇

𝑇

2
− 𝑠𝑖𝑛 𝑛

2𝜋

𝑇
𝑇]  

𝑎𝑛 =
4

𝑛𝜔𝑇
𝑠𝑖𝑛 𝑛𝜋 −

2

𝑛𝜔𝑇
𝑠𝑖𝑛 2𝑛𝜋 = 0 

 

𝑏𝑛 =
2

𝑇
 ∫ 𝑓(𝑡)𝑠𝑖𝑛 𝑛𝜔𝑡 

𝑇

0
𝑑𝑡 =

2

𝑇
 [∫ 1. 𝑠𝑖𝑛 𝑛𝜔𝑡

𝑇
2⁄

0
𝑑𝑡 + ∫ −1 . 𝑠𝑖𝑛 𝑛𝜔𝑡

𝑇
𝑇

2⁄
𝑑𝑡]  

 

𝑏𝑛 =
2

𝑇
[−

1

𝑛𝜔
 𝑐𝑜𝑠 𝑛𝜔𝑡|

𝑇
2⁄

0
+

1

𝑛𝜔
 𝑐𝑜𝑠 𝑛𝜔𝑡|

𝑇    
𝑇

2⁄ ]  

 

𝑏𝑛 =
2

𝑇
[−

1

𝑛𝜔
 𝑐𝑜𝑠 𝑛𝜔

𝑇

2
+

1

𝑛𝜔
+

1

𝑛𝜔
 𝑐𝑜𝑠 𝑛𝜔𝑇 −

1

𝑛𝜔
𝑐𝑜𝑠 𝑛𝜔

𝑇

2
]  

 

𝑏𝑛 =
2

𝑛𝜔𝑇
[−2 𝑐𝑜𝑠 𝑛𝜔

𝑇

2
+ 1 + 𝑐𝑜𝑠 𝑛𝜔𝑇] =

2

𝑛
2𝜋

𝑇
𝑇

[−2 𝑐𝑜𝑠 𝑛
2𝜋

𝑇

𝑇

2
+ 1 + 𝑐𝑜𝑠 𝑛

2𝜋

𝑇
𝑇]  

 

𝑏𝑛 =
1

𝑛𝜋
[−2 𝑐𝑜𝑠 𝑛𝜋 + 1 + 𝑐𝑜𝑠 2𝑛𝜋]  

 

𝑏𝑛 = {
𝑏𝑛 = 0         𝑛 = 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 (2,4,6, … )

𝑏𝑛 =
4

𝑛𝜋
       𝑛 = 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 (1,3,5, … )

 

 

 

Step3: write the periodic function in form of Fourier series 

  

𝑓(𝑡) =
4

𝜋
∑

1

𝑛
𝑠𝑖𝑛 

2𝑛𝜋

𝑇
𝑡

∞

𝑛=1

 

 

0 0 
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If we plot this function, for 𝑛 = 1, 𝑛 = 5, 𝑛 = 12 terms of this Fourier series and compare it with 

the original function, you will see, with increasing the number of terms in Fourier series, the 

results will be closer to the original function. Usually for 𝑛 > 100 this function become very close 

(almost same) to the original function with the advantage of working with series of harmonic terms. 

 
 

Application for using Fourier series in vibration: 

 

If we having forcing function in the form of periodic function, we can write it in form of Fourier 

series, find the solution for each term in series and add them with each other (use superposition). 

 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝑎0 + ∑ [𝑎𝑛𝑐𝑜𝑠 𝑛𝜔𝑡 + 𝑏𝑛𝑠𝑖𝑛 𝑛𝜔𝑡 ]∞
𝑛=1    

 

𝑎0 → 𝑢𝑠𝑡𝑎𝑡𝑖𝑐 

 

∑ 𝑎𝑛𝑐𝑜𝑠 𝑛𝜔𝑡∞
𝑛=1 → 𝑢𝐶𝑛(cos 𝑡𝑒𝑟𝑚𝑠)  

 

 ∑ 𝑏𝑛𝑠𝑖𝑛 𝑛𝜔𝑡∞
𝑛=1 → 𝑢𝑠𝑛(sin 𝑡𝑒𝑟𝑚𝑠) 

 

 

Add all solutions to get final solution. It would be hard with hand calculation but you can use some 

computational software (e.g. Matlab) to do this. 

 

 

 

𝑛 = 1 
𝑛 = 5 

𝑛 = 12 

Find the solution for the static term 

Find the solution for all of the cos terms 

Find the solution for all of the sin terms 
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In general form we have from before: 

 

 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝐹0 𝑐𝑜𝑠𝜔𝑡 = (
𝐹0

𝑘
)

1

√[(1 − 𝑟2)2 + (2𝜁𝑟)2]
 

𝑢(𝑡) = 𝑢𝑠𝑡𝑎𝑡𝑖𝑐 + ∑(𝑢𝐶𝑛

∞

𝑛=1

+ 𝑢𝑠𝑛) 

 

𝑢𝑠𝑡𝑎𝑡𝑖𝑐 =
𝐹0

𝑘
=

𝑎0

𝑘
     (

1

√[(1−𝑟2)2+(2𝜁𝑟)2]
= 0) 

 

𝑢(𝑡) =
𝑎0

𝑘
+ ∑

𝑎𝑛

𝑘

1

√[(1 − 𝑛2𝑟2)2 + (2𝜁𝑛𝑟)2]
cos(𝑛𝜔𝑡 − 𝜃𝑛)

∞

𝑛=1

+ ∑
𝑏𝑛

𝑘

1

√[(1 − 𝑛2𝑟2)2 + (2𝜁𝑛𝑟)2]
s 𝑖𝑛(𝑛𝜔𝑡 − 𝜃𝑛)

∞

𝑛=1

 

 

When for harmonically excited system 𝜃𝑛 would be: 

 

𝜃𝑛 = 𝑡𝑎𝑛−1
2𝜁𝑛𝑟

1 − 𝑛2𝑟2
 

 

 

General 

Response 
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B) Periodic Force 

 

Example 34: A SODF system is shown in following figure. This system includes two springs with 

same stiffness of 𝑘 = 3.5 𝑘𝑁/𝑚 and a damper with damping coefficient of 𝑐 = 0.2 𝑘𝑁. 𝑠𝑒𝑐/𝑚 

and a mass 𝑚 = 20 𝑘𝑔. A cam drive mechanism is attached to the spring and move the system up. 

The cam operating at a frequency of 𝜔 = 60 𝑟𝑝𝑚. The input displacement function from the cam 

to the system is showing on the following graph. Find the response of the system u(t) based on this 

input displacement function. 

 

 
The input displacement is just related to spring (1), so the equation of motion would be: 

 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝑘1 𝑦(𝑡) 

 

𝑘1 = 3500 𝑁
𝑚⁄    ,  𝜔 = 60 ×

2𝜋

60
= 2𝜋 

𝑟𝑎𝑑

𝑠
 ,  𝑦𝑚𝑎𝑥 = 25 𝑚𝑚 = 0.025𝑚  ,   𝑇 = 1 𝑠𝑒𝑐 

 

𝑓(𝑡) = 𝑘1 𝑦(𝑡) = (3500)(0.025𝑡) = 87.5𝑡   (0 < 𝑡 < 1) 

 

𝑎0 =
1

𝑇
 ∫ 𝑓(𝑡)

𝑇

0

𝑑𝑡 =  ∫ 87.5𝑡
1

0

𝑑𝑡 =
87.5

2
 𝑡2 |

1
0

=
87.5

2
 

 

𝑎𝑛 =
2

𝑇
 ∫ 𝑓(𝑡)𝑐𝑜𝑠 𝑛𝜔𝑡 

𝑇

0

𝑑𝑡 = 2 ∫ 87.5𝑡 𝑐𝑜𝑠 𝑛𝜔𝑡 
1

0

𝑑𝑡 

𝑎𝑛 = 2 × 87.5 [
1

(𝑛𝜔)2
 𝑐𝑜𝑠 𝑛𝜔𝑡 +

1

𝑛𝜔
𝑡 𝑠𝑖𝑛 𝑛𝜔𝑡 ] |

1
0

 

𝑎𝑛 = 2 × 87.5 [
1

(2𝜋𝑛)2
 + 0 −

1

(2𝜋𝑛)2
− 0 ] = 0 

 

𝑏𝑛 =
2

𝑇
 ∫ 𝑓(𝑡)𝑠𝑖𝑛 𝑛𝜔𝑡 

𝑇

0

𝑑𝑡 = 2 ∫ 87.5𝑡 𝑠𝑖𝑛 𝑛𝜔𝑡 
1

0

𝑑𝑡 

 

1 

2 
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𝑏𝑛 = 2 × 87.5 [
1

(𝑛𝜔)2
 𝑠𝑖𝑛 𝑛𝜔𝑡 −

1

𝑛𝜔
𝑡 𝑐𝑜𝑠 𝑛𝜔𝑡 ] |

1
0

 

𝑏𝑛 = 2 × 87.5 [0 −
1

2𝜋𝑛
− 0 + 0 ] = −

87.5

𝜋𝑛
 

 

Note: ∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢  ,  For example: 

 

∫ 𝑡 𝑐𝑜𝑠 (𝑡)𝑑𝑡  , 𝑢 = 𝑡, 𝑑𝑣 = 𝑐𝑜𝑠 (𝑡)               𝑣 = 𝑠𝑖𝑛 (𝑡)  ,    𝑑𝑢 = 1 

∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢 = 𝑡 𝑠𝑖𝑛 (𝑡) − ∫ 𝑠𝑖𝑛 (𝑡)𝑑𝑡 = 𝑡 𝑠𝑖𝑛 (𝑡) + 𝑐𝑜𝑠 (𝑡)   

 

The springs in this system are going through same deformation, so they are parallel with each 

other. So total stiffness of the system would be equal to: 

 

𝑘𝑒𝑞 = 𝑘1 + 𝑘2 = 3500 + 3500 = 7000 𝑁/𝑚  

 

𝜁 =
𝑐

𝑐𝑐
=

𝑐

2√𝑘.𝑚
=

0.2×103

2√7000×20
= 0.267      

 

𝜔𝑛 = √
𝑘

𝑚
= √

7000

20
= 18.71 

𝑟𝑎𝑑

𝑠
 

 

𝑟 =
𝜔

𝜔𝑛
=

2𝜋

18.71
= 0.11𝜋 

 

 

𝑢(𝑡) =
𝑎0

𝑘
+ ∑

𝑎𝑛

𝑘

1

√[(1 − (𝑟𝑛)2)2 + (2𝜁𝑛𝑟)2]
cos(𝑛𝜔𝑡 − 𝜃𝑛)

∞

𝑛=1

+ ∑
𝑏𝑛

𝑘

1

√[(1 − (𝑟𝑛)2)2 + (2𝜁𝑛𝑟)2]
s 𝑖𝑛(𝑛𝜔𝑡 − 𝜃𝑛)

∞

𝑛=1

 

 

𝜃𝑛 = 𝑡𝑎𝑛−1
2𝜁𝑛𝑟

1 − 𝑛2𝑟2
 

 

 

𝑢(𝑡) =
87.5

2(7000)
−

87.5

𝜋(7000)
∑

1

𝑛

s 𝑖𝑛(2𝜋𝑛𝑡 − 𝜃𝑛)

√[(1 − (0.11𝑛𝜋)2)2 + (2 × 0.267 × 𝑛 × 0.11𝜋)2]

∞

𝑛=1

 

 

 

𝜃𝑛 = 𝑡𝑎𝑛−1
0.0587𝑛𝜋

1 − (0.11𝑛𝜋)2
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C) General Forcing Function 

 

 

As the last type of forcing function, we study the general forcing function without any limitation. 

The force function can be impulse force, impact load, blast load, earthquake load, etc. 

 

Look at the response of the mass under the action of a general function 𝑓(𝑡). In this case the 

approach to drive the response is done in two different ways: 1) Convolution Theorem 2) 

Duhamel's Integral. With using both approaches, we reach the same results. However, in this class, 

we are only working on Duhamel's Integral method. 

 

 
 

First of all, we assume system is linear and that means if you have several loads/forces acting on 

the system, if you find the response to the system under the action of each individual load and 

add them up, that will give you total response.  

 

For the previous function, we can break down that function to infinite number of loads. 

 

 
If we can find the response of the system under the load of 𝑓(𝜏) for any arbitrary point at the 

time of (𝜏) with duration of (𝑑𝜏), then we can apply it throughout the entire period and find total 

solution.  
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Let’s introduce some terminologies: 

 

1) Impulse loading: Load with a short duration.  

𝐼𝑚𝑝𝑢𝑙𝑠𝑒 = 𝑓(𝜏). 𝑑𝜏   

2) Impulse apply to a system causes a change in the momentum  

 

𝑓𝑖(𝜏). 𝑑𝜏                   𝑓. 𝑑𝜏 = 𝑑(𝑚𝑢̇)                    𝑓 =
𝑑

𝑑𝜏
(𝑚𝑢̇) 

If the mass is constant, we can say the impulse causes a change in velocity.  

 

𝑓. 𝑑𝜏 = 𝑑(𝑚𝑢̇) = 𝑚𝑑(
𝑑𝑢

𝑑𝑡
)                      

𝑓.𝑑𝜏

𝑚
=

𝑑

𝑑𝑡
(𝑑𝑢) 

In the other words, from initial condition for system would be: 

{

𝑢0 = 0

𝑢̇0 =
𝑓. 𝑑𝜏

𝑚

 

This concept is the general form of the Newton's second law! 

Newton's second law: Rate of change of momentum of the mass is equal to the force acting on it. 

 

 

For  

simplicity 
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For finding the response for general force, we assume we don’t have a force vibration but we have 

a system which due to an impulse, it is subjected to an initial velocity. So, that means we have a 

free vibration, due to initial conditions (just initial velocity). 

From before we have the steady state response for free vibration of a damped system would be: 

 

𝑢(𝑡) = 𝑒−𝜁𝜔𝑛𝑡 [(
𝜁𝜔𝑛

𝜔𝑑
 𝑠𝑖𝑛 𝜔𝑑𝑡 + 𝑐𝑜𝑠𝜔𝑑𝑡) 𝑢0 +

𝑠𝑖𝑛 𝜔𝑑𝑡

𝜔𝑑
𝑢̇0] 

But in this case and from initial conditions 𝑢0 = 0 & 𝑢̇0 =
𝑓.𝑑𝜏

𝑚
, so we have: 

 

𝑢(𝑡) = 𝑒−𝜁𝜔𝑛𝑡 [(
𝜁𝜔𝑛

𝜔𝑑
 𝑠𝑖𝑛 𝜔𝑑𝑡 + 𝑐𝑜𝑠𝜔𝑑𝑡) 𝑢0 +

𝑠𝑖𝑛 𝜔𝑑𝑡

𝜔𝑑
𝑢̇0] 

 

𝑢(𝑡) =
𝑓. 𝑑𝜏

𝑚
×

1

𝜔𝑑
𝑒−𝜁𝜔𝑛𝑡 𝑠𝑖𝑛 𝜔𝑑𝑡 

However, we are looking to find the response of system at any point (moment) after this impulse 

was applied (a general point). 

 

 

The response of the system on that point would be: 

 

𝑢(𝑡 − 𝜏) =
𝑓. 𝑑𝜏

𝑚
×

1

𝜔𝑑
𝑒−𝜁𝜔𝑛(𝑡−𝜏) 𝑠𝑖𝑛 𝜔𝑑(𝑡 − 𝜏) 

0 

𝑓. 𝑑𝜏

𝑚
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However, this is the response of the system to one of these impulses! Now, we need to find the 

total response of system by adding the responses for all small impulses. The total response would 

be: 

 

𝑢(𝑡) =
1

𝑚𝜔𝑑
∫ 𝑓(𝜏)

𝑡

0

𝑒−𝜁𝜔𝑛(𝑡−𝜏) 𝑠𝑖𝑛 𝜔𝑑(𝑡 − 𝜏) 𝑑𝜏 

 

𝜏: A dummy variable. 

For an Undamped system(𝜁 = 0), we will have: 

 

𝑢(𝑡) =
1

𝑚𝜔𝑛
∫ 𝑓(𝜏)

𝑡

0

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 

 

Duhamel's 

Integral 
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C) General Forcing Function 

 

Let’s see some application of this concept. 

Example 35: We have an undamped system which is subjected to an impact load (𝐹0). Find the 

maximum displacement due to this load. 

 

 

Impact load: Whenever a machine members are subjected to load with a sudden impact due to 

falling or hitting one object on another (zero force at time zero but suddenly change to some 

constant force).  

𝑓(𝑡) = {
0            𝑡 ≤ 0
𝐹0          𝑡 > 0

  

 

Note: There is big difference between the impact load and static load. In static load, the load 

adding to the system gradually during process but for impact load, we dropping an object on system 

and from zero load suddenly adding a constant load to system (that causes initial conditions on 

system). 

 

𝑢(𝑡) =
1

𝑚𝜔𝑛
∫ 𝑓(𝜏)

𝑡

0

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 =
𝐹0

𝑚𝜔𝑛
∫ 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏

𝑡

0

 

 

𝑢(𝑡) =
𝐹0

𝑚𝜔𝑛
[

1

𝜔𝑛
 𝑐𝑜𝑠 𝜔𝑛(𝑡 − 𝜏)] |

𝑡
0

=
𝐹0

𝑚𝜔𝑛
2

(1 − 𝑐𝑜𝑠 𝜔𝑛𝑡) =
𝐹0

𝑚
𝑘
𝑚

(1 − 𝑐𝑜𝑠 𝜔𝑛𝑡) 

𝑢(𝑡) =
𝐹0

𝑘
(1 − 𝑐𝑜𝑠 𝜔𝑛𝑡) 

𝛿𝑠𝑡𝑎𝑡𝑖𝑐 =
𝐹0

𝑘
 (Static displacement)  
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The maximum of 𝑢(𝑡) would be happened on 𝑐𝑜𝑠 𝜔𝑛𝑡 = −1 

 

𝑢𝑚𝑎𝑥 = 2
𝐹0

𝑘
= 2 𝛿𝑠𝑡𝑎𝑡𝑖𝑐 

 

 

 

 

That is why for an impact load in machine design we always consider factor of safety of 2 for a 

dynamic load! 

Now let’s look at the damped case but with very small damping ratio (𝜁 ≠ 0 & 𝜁 ≪ 1) 

So, we have to assume τ as a dummy variable and solve the Duhamel's integral. 

𝑢(𝑡) =
1

𝑚𝜔𝑑
∫ 𝑓(𝜏)

𝑡

0

𝑒−𝜁𝜔𝑛(𝑡−𝜏) 𝑠𝑖𝑛 𝜔𝑑(𝑡 − 𝜏) 𝑑𝜏 

𝑢(𝑡) =
𝐹0

𝑘
[1 − 𝑒−𝜁𝜔𝑛𝑡 (𝑐𝑜𝑠 𝜔𝑑𝑡 +

𝜁

√1 − 𝜁2
𝑠𝑖𝑛 𝜔𝑑𝑡)] 

 

To find the 𝑢𝑚𝑎𝑥, we have to solve (
𝑑𝑢

𝑑𝑡
= 0) and find 𝑡, and substitute it in above equation. 

 

𝑑𝑢

𝑑𝑡
= 𝜁𝜔𝑛𝑒−𝜁𝜔𝑛𝑡 (𝑐𝑜𝑠 𝜔𝑑𝑡 +

𝜁

√1 − 𝜁2
 𝑠𝑖𝑛 𝜔𝑑𝑡) − 𝑒−𝜁𝜔𝑛𝑡 (−𝜔𝑑 𝑠𝑖𝑛 𝜔𝑑𝑡 +

𝜁𝜔𝑑

√1 − 𝜁2
 𝑐𝑜𝑠 𝜔𝑑𝑡) = 0 

 

 

𝑑𝑢

𝑑𝑡
= 𝜁𝜔𝑛𝑐𝑜𝑠 𝜔𝑑𝑡 + 𝜁2𝜔𝑛 𝑠𝑖𝑛 𝜔𝑑𝑡 + 𝜔𝑑  𝑠𝑖𝑛 𝜔𝑑𝑡 − 𝜁𝜔𝑑𝑐𝑜𝑠 𝜔𝑑𝑡 = 0 

 

𝑑𝑢

𝑑𝑡
= (𝜁2𝜔𝑛 + 𝜔𝑑) 𝑠𝑖𝑛 𝜔𝑑𝑡 = 0 

 

 

Dynamic Factor (DF) 

Dynamic Load Factor (DLF) 

Static 

Displacement 

(constant) 

DLF (We have to find the 

maximum of this part) 

≠ 0 ≠ 0 

For 𝜁 ≪ 1, ≈ 1 For 𝜁 ≪ 1, ≈ 1 

Constant and it 

can’t be zero 
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𝑠𝑖𝑛 𝜔𝑑𝑡 = 0                𝜔𝑑𝑡 = 𝜋                 𝑡 =
𝜋

𝜔𝑑
 

 

𝐷𝐿𝐹 =  1 + 𝑒
−𝜁𝜔𝑛

𝜋
𝜔𝑑 = 1 + 𝑒

−𝜁𝜋

√1−𝜁2

= 1 + 𝑒−𝜁𝜋 

 

Note: (𝜔𝑑 = √1 − 𝜁2 𝜔𝑛)  

 

𝐷𝐿𝐹 = 1 + 𝑒−𝜁𝜋 

 

Even in case of damped system, as long as we have a small damping ratio (𝜁 less than 10%), 𝐷𝐿𝐹 

would be very close to 𝐷𝐿𝐹 for undamped system (𝐷𝐿𝐹 ≅ 2). So, for the case of impact loading, it 

would be a fair assumption to consider 𝐷𝐿𝐹 = 2 in the design. 

 

𝜁 = 0.01                      𝐷𝐿𝐹 = 1 + 𝑒−𝜁𝜋 = 1.97 ≅ 2 

𝜁 = 0.02                      𝐷𝐿𝐹 = 1 + 𝑒−𝜁𝜋 = 1.94 ≅ 2 

 

Here is comparison between displacement caused by a static load and an impact load: 

 

 

 

 

 

 

For 𝜁 ≪ 1, ≈ 1 

Static Load Impact Load 



ME 4440-5540 Lecture 30 
 

4 
 

Applications for Duhamel's Integral: 

First Application: How to evaluate the maximum displacement 𝑢𝑚𝑎𝑥 vs static displacement (
𝐹0

𝑘
), if we 

have general forcing function. 

Second Application: Shock Spectrum  

 

First Application: 

We already study the simple differential equations and saw how to solve, but in the case of Duhamel's 

Integral, the integration is the most important part. In the forced vibration, we studied the harmonic forces 

(and periodic forces) to drive displacement function 𝑢 (𝑡). But the ultimate goal is finding the maximum 

displacement 𝑢𝑚𝑎𝑥 to find the maximum stresses 𝜎𝑚𝑎𝑥 for the design purposes. In the case of harmonic 

forces, independent to details of force function (amplitude, frequency, etc.), the maximum displacement 

was equal to multiplication of static displacement and frequency response function 𝑢𝑚𝑎𝑥 =
𝐹0

𝑘
× |𝐻|. 

However, in general force function, we have to divide the function to different regions and check each of 

them for maximum displacement and compare with each other to find where the maximum displacement 

will be happened.  
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C) General Forcing Function 

Example 36: There is a ramp load apply to an undamped system as it is shown in following graph. Time 

𝜏 represent any arbitrary time from zero to time 𝑡𝑑. Find the maximum displacement 𝑢𝑚𝑎𝑥 vs static 

displacement (
𝐹0

𝑘
) of this system. 

 

Wrong assumption: There is no load after time 𝑡𝑑 on this system so we can assume there is no load 

applied on this system at all and system has not any vibration!  

This is wrong assumption because before time 𝑡𝑑, the force causes some initial condition (initial velocity) 

on system and after time 𝑡𝑑, we can assume system as a free vibration case! 

According to the graph, forcing function would be: 

 

𝑓(𝑡) = {
(1 −

𝜏

𝑡𝑑
) 𝐹0             0 ≤ 𝑡 < 𝑡𝑑

0                             𝑡 > 𝑡𝑑

 

In this case, we can divide the function to two regions: 1)  0 ≤ 𝑡 < 𝑡𝑑   2) 𝑡 > 𝑡𝑑 

1)  0 ≤ 𝑡 < 𝑡𝑑 

Displacement function for an Undamped system(𝜁 = 0), would be: 

Note: we are taking integral from 0 to 𝑡! 

𝑢(𝑡) =
1

𝑚𝜔𝑛
∫ 𝑓(𝜏)

𝑡

0

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 

𝑢(𝑡) =
𝐹0

𝑚𝜔𝑛
∫ (1 −

𝜏

𝑡𝑑

)
𝑡

0

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 

 

𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) = 𝑠𝑖𝑛 𝜔𝑛𝑡 𝑐𝑜𝑠 𝜔𝑛𝜏 − 𝑐𝑜𝑠 𝜔𝑛𝑡 𝑠𝑖𝑛 𝜔𝑛𝜏  

 

Constant  
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𝑢(𝑡) =
𝐹0

𝑚𝜔𝑛
∫ (1 −

𝜏

𝑡𝑑

) 𝑠𝑖𝑛 𝜔𝑛𝑡 𝑐𝑜𝑠 𝜔𝑛𝜏 𝑑𝜏
𝑡

0

−
𝐹0

𝑚𝜔𝑛
∫ (1 −

𝜏

𝑡𝑑

)  𝑐𝑜𝑠 𝜔𝑛𝑡 𝑠𝑖𝑛 𝜔𝑛𝜏 𝑑𝜏
𝑡

0

 

 

𝑢(𝑡) =
𝐹0

𝑚𝜔𝑛

{𝑠𝑖𝑛 𝜔𝑛𝑡 [∫ 𝑐𝑜𝑠 𝜔𝑛𝜏 𝑑𝜏
𝑡

0

−
1

𝑡𝑑

∫ 𝜏 𝑐𝑜𝑠 𝜔𝑛𝜏 𝑑𝜏
𝑡

0

] − 𝑐𝑜𝑠 𝜔𝑛𝑡 [∫ 𝑠𝑖𝑛 𝜔𝑛𝜏 𝑑𝜏 −
1

𝑡𝑑

∫ 𝜏 𝑠𝑖𝑛 𝜔𝑛𝜏 𝑑𝜏
𝑡

0

𝑡

0

]} 

 

We have 4 integrals that need to be solved: 

1) ∫ 𝑐𝑜𝑠 𝜔𝑛𝜏 𝑑𝜏
𝑡

0
=

1

𝜔𝑛
 𝑠𝑖𝑛 𝜔𝑛𝜏|

𝑡
0

=
1

𝜔𝑛
 𝑠𝑖𝑛 𝜔𝑛𝑡 

 

3) ∫ 𝑠𝑖𝑛 𝜔𝑛𝜏 𝑑𝜏
𝑡

0
= −

1

𝜔𝑛
 𝑐𝑜𝑠 𝜔𝑛𝜏|

𝑡
0

=
1

𝜔𝑛
−

1

𝜔𝑛
 𝑐𝑜𝑠 𝜔𝑛𝑡 

 

For integration number 2 & 4, we need to use the integration by parts: 

∫ 𝑢 𝑑𝑣
𝑏

𝑎

= 𝑢𝑣|
𝑏
𝑎

− ∫ 𝑣 𝑑𝑢
𝑏

𝑎

 

2) ∫ 𝜏 𝑐𝑜𝑠 𝜔𝑛𝜏 𝑑𝜏
𝑡

0
 

𝑢 = 𝜏     ,     𝑑𝑢 = 𝑑𝜏     ,     𝑑𝑣 = 𝑐𝑜𝑠 𝜔𝑛𝜏 𝑑𝜏    ,    𝑣 =
1

𝜔𝑛
 𝑠𝑖𝑛 𝜔𝑛𝜏  

∫ 𝜏 𝑐𝑜𝑠 𝜔𝑛𝜏 𝑑𝜏
𝑡

0
=

𝜏

𝜔𝑛
 𝑠𝑖𝑛 𝜔𝑛𝜏|

𝑡
0

− ∫
1

𝜔𝑛
 𝑠𝑖𝑛 𝜔𝑛𝜏 𝑑𝜏 =

𝑡

0

𝑡

𝜔𝑛
 𝑠𝑖𝑛 𝜔𝑛𝑡 −

1

𝜔𝑛
 [−

1

𝜔𝑛
𝑐𝑜𝑠 𝜔𝑛𝜏] |

𝑡
0

  

 

∫ 𝜏 𝑐𝑜𝑠 𝜔𝑛𝜏 𝑑𝜏
𝑡

0

=
𝑡

𝜔𝑛

 𝑠𝑖𝑛 𝜔𝑛𝑡 +
1

𝜔𝑛
2

(𝑐𝑜𝑠 𝜔𝑛𝑡 − 1) 

4) ∫ 𝜏 𝑠𝑖𝑛 𝜔𝑛𝜏 𝑑𝜏
𝑡

0
 

𝑢 = 𝜏     ,     𝑑𝑢 = 𝑑𝜏     ,     𝑑𝑣 = 𝑠𝑖𝑛 𝜔𝑛𝜏 𝑑𝜏    ,    𝑣 = −
1

𝜔𝑛
 𝑐𝑜𝑠 𝜔𝑛𝜏  

∫ 𝜏 𝑠𝑖𝑛 𝜔𝑛𝜏 𝑑𝜏
𝑡

0
= −

𝜏

𝜔𝑛
 𝑐𝑜𝑠 𝜔𝑛𝜏|

𝑡
0

+ ∫
1

𝜔𝑛
 𝑐𝑜𝑠 𝜔𝑛𝜏 𝑑𝜏 =

𝑡

0
−

𝑡

𝜔𝑛
 𝑐𝑜𝑠 𝜔𝑛𝑡 +

1

𝜔𝑛
 [

1

𝜔𝑛
𝑠𝑖𝑛 𝜔𝑛𝜏] |

𝑡
0

  

∫ 𝜏 𝑠𝑖𝑛 𝜔𝑛𝜏 𝑑𝜏
𝑡

0

= −
𝑡

𝜔𝑛

 𝑐𝑜𝑠 𝜔𝑛𝑡 +
1

𝜔𝑛
2

 𝑠𝑖𝑛 𝜔𝑛𝑡 

 

Total response of system, 𝑢(𝑡) for (𝟎 < 𝒕 ≤ 𝒕𝒅) : 

 

𝑢(𝑡) =
𝐹0

𝑚𝜔𝑛
{𝑠𝑖𝑛 𝜔𝑛𝑡 [

1

𝜔𝑛
 𝑠𝑖𝑛 𝜔𝑛𝑡 −

𝑡

𝜔𝑛𝑡𝑑
 𝑠𝑖𝑛 𝜔𝑛𝑡 −

1

𝜔𝑛
2𝑡𝑑

𝑐𝑜𝑠 𝜔𝑛𝑡 +
1

𝜔𝑛
2𝑡𝑑

]

− 𝑐𝑜𝑠 𝜔𝑛𝑡 [
1

𝜔𝑛
−

1

𝜔𝑛
 𝑐𝑜𝑠 𝜔𝑛𝑡 +

𝑡

𝜔𝑛𝑡𝑑
 𝑐𝑜𝑠 𝜔𝑛𝑡 −

1

𝜔𝑛
2𝑡𝑑

 𝑠𝑖𝑛 𝜔𝑛𝑡]} 

1 2 3 4 
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Simplify version of 𝑢(𝑡): 

𝑢(𝑡) =
𝐹0

𝑘
{1 −

𝑡

𝑡𝑑
+

1

𝜔𝑛𝑡𝑑
𝑠𝑖𝑛 𝜔𝑛𝑡 − 𝑐𝑜𝑠 𝜔𝑛𝑡 } 

Now for finding the maximum displacement (𝑢𝑚𝑎𝑥), we have to take derivative of 𝑢(𝑡) and set it 

equal zero and solve it for 𝑡, put this 𝑡 value back to the 𝑢(𝑡) to find the 𝑢𝑚𝑎𝑥. 

2) 𝑡 > 𝑡𝑑 

For this part, we can use two different methods: 

A) As it can be seen after time 𝑡𝑑, there is no force acting on the system and the system is undamped. 

So, we have a free vibration of an undamped system that having some initial conditions which can 

be find from previous part (𝑢(𝑡𝑑) & 𝑢̇(𝑡𝑑)) 

 

B) We can write the Duhamel's integral for part 1 (integral from 0 𝑡𝑜 𝑡𝑑) plus part 2 (integral 

from 𝑡𝑑 𝑡𝑜 𝑡) for any 𝑡 > 𝑡𝑑 

 

𝑢(𝑡) =
𝐹0

𝑚𝜔𝑛
∫ (1 −

𝜏

𝑡𝑑

)
𝒕𝒅

0

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 +
1

𝑚𝜔𝑛
∫ 𝑓(𝜏)

𝑡

𝒕𝒅

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 

 

 

 

If we solve it, we will get the same result as previous section, but this time, integral from 0 to 𝑡𝑑. So, the 

result for second part of the graph would be: 

𝑢(𝑡) =
𝐹0

𝑚𝜔𝑛
2

{𝑠𝑖𝑛 𝜔𝑛𝑡 [−
1

𝜔𝑛𝑡𝑑
𝑐𝑜𝑠 𝜔𝑛𝑡𝑑 +

1

𝜔𝑛𝑡𝑑
] − 𝑐𝑜𝑠 𝜔𝑛𝑡 [1 −

1

𝜔𝑛𝑡𝑑
 𝑠𝑖𝑛 𝜔𝑛𝑡𝑑]} 

𝑢(𝑡) =
𝐹0

𝑘
{𝑠𝑖𝑛 𝜔𝑛𝑡 [−

1

𝜔𝑛𝑡𝑑
𝑐𝑜𝑠 𝜔𝑛𝑡𝑑 +

1

𝜔𝑛𝑡𝑑
] − 𝑐𝑜𝑠 𝜔𝑛𝑡 [1 −

1

𝜔𝑛𝑡𝑑
 𝑠𝑖𝑛 𝜔𝑛𝑡𝑑]} 

Note: The results from both methods would be same! 

Then, we can find the maximum displacement (𝑢𝑚𝑎𝑥), for this part same as the first part of the 

graph and compare them to find which of them is the true 𝑢𝑚𝑎𝑥 for the system. 

 

In general, a “General Force Function”, based on the shape of the function, can be divide to several 

sections/parts (any changes in the forcing function will be consider as a new section). So, we have 

to evaluate a response function section by section, find the 𝑢𝑚𝑎𝑥 for each of them, and compare to 

find the true 𝑢𝑚𝑎𝑥 for the system. 

 

 Do you think a blast loading or a static load has more severe effect on a structure? For 

answering to this question, look at the following problem. 

0 

𝑓(𝜏) = 0 for 𝑡 > 𝑡𝑑 
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C) General Forcing Function 

Example 37: The following figure showing a water tower carries 5,000 kg of water. The column has a 

stiffness of 𝑘 = 5.4 × 106 𝑁/𝑚. This water tower is subjected to a blast loading (very short duration of 

loading) as shown in the following graph. Find the maximum displacement 𝑢𝑚𝑎𝑥 of this water tower. 

Assume this structure as an undamped system. 

 

 
 

In this case, we have 3 regions: 

 

 
 

 

𝜔𝑛 = √
𝑘

𝑚
= √

5.4×106

5000
= 32. 86 

𝑟𝑎𝑑

𝑠
  

 

𝑇 =
2𝜋

𝜔𝑛
=

2𝜋

32.86
= 0.191 𝑠𝑒𝑐  

 

1 2 3 
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Undamped              𝜁 = 0 

Now, to evaluate the response of system, we can use the Duhamel's integral for an undamped 

case.. 

 

𝑢(𝑡) =
1

𝑚𝜔𝑛
∫ 𝑓(𝜏)
𝑡

0

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 

 

In this case, we have three regions for 𝑓(𝜏): 
 

 

𝑓(𝜏) =

{
 
 

 
 

2𝐹0
𝑡0
𝜏           0 < 𝑡 <

𝑡0
2

2𝐹0 (1 −
𝜏

𝑡0
)       

𝑡0
2
< 𝑡 < 𝑡0   

       0                    𝑡0 < 𝑡   

 

Region 1: 0 < 𝑡 <
𝑡0

2
 

 

𝑢(𝑡) =
1

𝑚𝜔𝑛
∫
2𝐹0
𝑡0
𝜏

𝑡

0

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 

 

Note: We are taking integral from 0 𝑡𝑜 𝑡 Not from 0 𝑡𝑜
𝑡0

2
 ! Actually, we are interested to drive an 

expression for the response of system caused by the force in region 1, for any moment (not only 

in region 1).  

 

If we solve the integral for region 1, we will have: 

 

 

𝑢(𝑡) =
2𝐹0

𝑚𝜔𝑛2𝑡0
{𝑡 +

1

𝜔𝑛
[𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏)]|

𝑡
0
} =

2𝐹0
𝑘𝑡0

(𝑡 −
1

𝜔𝑛
𝑠𝑖𝑛 𝜔𝑛𝑡) = (

𝐹0
𝑘
)
2

𝑡0
(𝑡 −

1

𝜔𝑛
𝑠𝑖𝑛 𝜔𝑛𝑡) 

 

 

Note: Always the response to general loading depends on two important quantities: 1) natural 

frequency of the system (𝜔𝑛) 2) Duration of the forcing function (𝑡0). We will study later how can 

reach to maximum response as a function of these two quantities (Shock Spectrum)  

 

Region 2: 
𝑡0

2
< 𝑡 < 𝑡0 

For this case, we have to add the response of system from 0 𝑡𝑜
𝑡0

2
 to the response of system after 

time 
𝑡0

2
. 

Static response 
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𝑢(𝑡) =
1

𝑚𝜔𝑛
∫

2𝐹0
𝑡0
𝜏

𝑡0
2
 

0

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 +
1

𝑚𝜔𝑛
∫ 2𝐹0 (1 −

𝜏

𝑡0
)

𝑡 

𝑡0
2

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 

 

 

𝑢(𝑡) =
2𝐹0
𝑘𝑡0

(𝑡0 − 𝑡 +
1

𝜔𝑛
[2 𝑠𝑖𝑛 𝜔𝑛 (𝑡 −

𝑡0
2
) − 𝑠𝑖𝑛 𝜔𝑛𝑡]) 

 

 

Region 3: 𝑡0 < 𝑡 
 

In this case, we have two options: After time 𝑡0, we can look at the system as an undamped free 

vibration with some initial conditions (𝑢(𝑡0) & 𝑢̇(𝑡0)) or we can rewrite the Duhamel's integral 

for all three regions. 

 

𝑢(𝑡) =
1

𝑚𝜔𝑛
∫

2𝐹0
𝑡0
𝜏

𝑡0
2
 

0

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 +
1

𝑚𝜔𝑛
∫ 2𝐹0 (1 −

𝜏

𝑡0
)

𝑡0 

𝑡0
2

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏

+
1

𝑚𝜔𝑛
∫ 𝑓(𝑡)
𝑡 

𝑡0

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 

𝑢(𝑡) =
1

𝑚𝜔𝑛
∫

2𝐹0
𝑡0
𝜏

𝑡0
2
 

0

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 +
1

𝑚𝜔𝑛
∫ 2𝐹0 (1 −

𝜏

𝑡0
)

𝑡0 

𝑡0
2

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 

 

𝑢(𝑡) =
2𝐹0
𝑘𝑡0𝜔𝑛

[2 𝑠𝑖𝑛 𝜔𝑛 (𝑡 −
𝑡0
2
) − 𝑠𝑖𝑛 𝜔𝑛𝑡 − 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝑡0) ] 

 

 

For finding the maximum displacement of the system, we have to take derivative of all three 

region, set them equal zero, find the value for 𝑡, put it back to equations and find the maximum 

displacement for each region (if there is any) and compare them to find the maximum displacement 

for the system.  

 

1) Finding the maximum displacement for the first region 

 

𝑢(𝑡) =
2𝐹0
𝑘𝑡0

(𝑡 −
1

𝜔𝑛
𝑠𝑖𝑛 𝜔𝑛𝑡) 

 

𝑑𝑢

𝑑𝑡
=
2𝐹0
𝑘𝑡0

(1 − 𝑐𝑜𝑠 𝜔𝑛𝑡) 

0 
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For region (1), 
2𝐹0

𝑘𝑡0
> 0 and maximum value for 𝑡 is 0.015 𝑠𝑒𝑐, so 

1 − 𝑐𝑜𝑠 𝜔𝑛𝑡 > 0. Therefore, always 
𝑑𝑢

𝑑𝑡
> 0 for whole period of 0 < 𝑡 <

𝑡0

2
. That means 

𝑑𝑢

𝑑𝑡
 never 

become zero for any value of 𝑡 in the region (1) and there is no maximum displacement for the 

region (1). 

 

2) Finding the maximum displacement for the second region 

 

𝑢(𝑡) =
2𝐹0
𝑘𝑡0

(𝑡0 − 𝑡 +
1

𝜔𝑛
[2 𝑠𝑖𝑛 𝜔𝑛 (𝑡 −

𝑡0
2
) − 𝑠𝑖𝑛 𝜔𝑛𝑡]) 

 

𝑑𝑢

𝑑𝑡
=
2𝐹0
𝑘𝑡0

(−1 + 2 𝑐𝑜𝑠 𝜔𝑛 (𝑡 −
𝑡0
2
) − 𝑐𝑜𝑠 𝜔𝑛𝑡) 

 

Let’s first check for start and end point of the region (2). 

For 𝑡 =
𝑡0

2
 

𝑑𝑢

𝑑𝑡
=
2𝐹0
𝑘𝑡0

(−1 + 2 𝑐𝑜𝑠 𝜔𝑛 (
𝑡0
2
−
𝑡0
2
) − 𝑐𝑜𝑠 𝜔𝑛

𝑡0
2
) > 0 

For 𝑡 = 𝑡0 

 

𝑑𝑢

𝑑𝑡
=
2𝐹0
𝑘𝑡0

(−1 + 2 𝑐𝑜𝑠 𝜔𝑛 (𝑡0 −
𝑡0
2
) − 𝑐𝑜𝑠 𝜔𝑛𝑡0) =

2𝐹0
𝑘𝑡0

(−1 + 2 𝑐𝑜𝑠 (0.493) − cos (0.986)) > 0 

 

For region (2), 
2𝐹0

𝑘𝑡0
> 0 and for any value of  𝑡 (

𝑡0

2
< 𝑡 < 𝑡0),  

𝑑𝑢

𝑑𝑡
> 0. That means 

𝑑𝑢

𝑑𝑡
 never become 

zero for any value of 𝑡 in the region (2) and there is no maximum displacement for the region (2). 

So, if there is any maximum displacement for the system, it has to be happen in region (3). 

 

 

 

3) Finding the maximum displacement for the third region 

 

First we can simplify the 𝑢(𝑡) for this region. 

 

𝑢(𝑡) =
2𝐹0
𝑘𝑡0𝜔𝑛

[2 𝑠𝑖𝑛 𝜔𝑛 (𝑡 −
𝑡0
2
) − 𝑠𝑖𝑛 𝜔𝑛𝑡 − 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝑡0) ] 

 

 

 

 

2 

We can expand these parts 
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𝑢(𝑡) =
2𝐹0
𝑘𝑡0𝜔𝑛

[2 𝑠𝑖𝑛 𝜔𝑛𝑡 𝑐𝑜𝑠  𝜔𝑛
𝑡0
2
− 2 𝑐𝑜𝑠 𝜔𝑛𝑡 𝑠𝑖𝑛 𝜔𝑛

𝑡0
2
− 𝑠𝑖𝑛 𝜔𝑛𝑡

− 𝑠𝑖𝑛 𝜔𝑛𝑡 𝑐𝑜𝑠 𝜔𝑛𝑡0 + 𝑐𝑜𝑠 𝜔𝑛𝑡 𝑠𝑖𝑛 𝜔𝑛𝑡0] 

 

 

 

𝑢(𝑡) =
2𝐹0
𝑘𝑡0𝜔𝑛

[𝑠𝑖𝑛 𝜔𝑛𝑡[2 𝑐𝑜𝑠 (0.493) − 1 − 𝑐𝑜𝑠 (0.986)] + 𝑐𝑜𝑠 𝜔𝑛𝑡[−2 𝑠𝑖𝑛 (0.493)

+ 𝑠𝑖𝑛 (0.986)]] 
 

 

𝑢(𝑡) =
2𝐹0
𝑘𝑡0𝜔𝑛

[0.208 𝑠𝑖𝑛 𝜔𝑛𝑡 − 0.113 𝑐𝑜𝑠 𝜔𝑛𝑡] 

 

𝑢(𝑡) =
2𝐹0
𝑘𝑡0𝜔𝑛

√𝐴2 + 𝐵2 𝑠𝑖𝑛 (𝜔𝑛𝑡 + ∅) 

 

Instead of take the derivative of this equation and equate to zero to find the 𝑢𝑚𝑎𝑥, we can see the 

response is a harmonic function, so the maximum value would be: 

 

𝑢𝑚𝑎𝑥 =
2𝐹0
𝑘𝑡0𝜔𝑛

√𝐴2 + 𝐵2 =
2 × 5000 × 9.81

5.4 × 106 × 0.03 × 32. 86
√0.2082 + 0.1132 = 0.004 𝑚 

 

 

𝛿𝑠𝑡𝑎𝑡𝑖𝑐 =
𝐹0

𝑘
=

5000×9.81

5.4×106
= 0.009 𝑚  

 

As you can see, the maximum displacement made by a blast load is even less than a half of a static 

load! Therefore, it is not necessary the maximum response of a blast load (or any other short 

duration dynamic loads) be higher than corresponding static displacement of system. 

 

 

 

𝜔𝑛
𝑡0
2
 (𝑟𝑎𝑑) 𝜔𝑛𝑡0 (𝑟𝑎𝑑) 

A B 

Harmonic 

Function 
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C) General Forcing Function 

 

General Approach-Numerical Integration:  

 

In order to find the response under a general loading, using the analytical integral is hard and have 

to be solve for each regions. A more general approach to find the response of system under a 

general loading is using numerical integration. 

𝑢(𝑡) =
1

𝑚𝜔𝑛
∫ 𝑓(𝜏)

𝑡

0

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 

𝑢(𝑡) =
1

𝑚𝜔𝑛
∫ 𝑓(𝜏)

𝑡

0

 𝑠𝑖𝑛 𝜔𝑛𝑡 𝑐𝑜𝑠 𝜔𝑛𝜏 − 𝑐𝑜𝑠 𝜔𝑛𝑡 𝑠𝑖𝑛 𝜔𝑛𝜏 𝑑𝜏 

𝜔𝑛𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

𝑢(𝑡) =
1

𝑚𝜔𝑛
𝑠𝑖𝑛 𝜔𝑛𝑡 ∫ 𝑓(𝜏)

𝑡

0

 𝑐𝑜𝑠 𝜔𝑛𝜏 𝑑𝜏 −
1

𝑚𝜔𝑛
𝑐𝑜𝑠 𝜔𝑛𝑡 ∫ 𝑓(𝜏)

𝑡

0

 𝑠𝑖𝑛 𝜔𝑛𝜏 𝑑𝜏 

 

𝑢(𝑡) =
1

𝑚𝜔𝑛

{𝐴 𝑠𝑖𝑛 𝜔𝑛𝑡 − 𝐵 𝑐𝑜𝑠 𝜔𝑛𝑡} =
1

𝑚𝜔𝑛

√𝐴2 + 𝐵2 𝑠𝑖𝑛 (𝜔𝑛𝑡 + ∅) 

 

(A & B are time dependent)  

 

You can see, always 𝑢(𝑡) can be represent as a harmonic function! So, we only need to find the A 

and B. The procedure to find A & B is called numerical integration. The most common types of 

numerical integration methods: 1) Central Difference method 2) Newmark-𝛽 numerical integration 

3) Wilson-𝜃 scheme numerical integration.  

 

We are not cover any of these methods in these course and you can know about them in more 

advance level courses. 

 

 

Second Application: Shock Spectrum/Response Spectrum   

 

The maximum displacement under any kind of short duration loading which we call that shock 

loading is a function of two variables: time duration of the load (𝑡0) and natural frequency of the 

system (𝜔𝑛). Depending on these two variables, you may have a response with maximum 

displacement higher than corresponding static displacement or lower than that. 

 

Note: We only know for impact loading the factor of safety should be equal “2”, and for other 

types of loading you have to evaluate the maximum value. 

 

A B 
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In harmonic loading the maximum displacement was multiplication of static displacement by 

maximum value of the frequency response function (𝑢𝑚𝑎𝑥 =
𝐹0

𝑘
|𝐻|𝑚𝑎𝑥). Shock 

Spectrum/Response Spectrum is sort of equivalent of that concept for maximum displacement in 

case of a general loading. To make it clear, let’s look at the previous example again. 

 

 
We found the 𝑢𝑚𝑎𝑥 like this: 

𝑢(𝑡) =
2

𝐹0

𝑘
𝑡0𝜔𝑛

[0.208 𝑠𝑖𝑛 𝜔𝑛𝑡 − 0.113 𝑐𝑜𝑠 𝜔𝑛𝑡] 

 

𝑢𝑚𝑎𝑥 =
2

𝐹0
𝑘

𝑡0𝜔𝑛
= 0.004𝑚   ,   𝛿𝑠𝑡𝑎𝑡𝑖𝑐 =

𝐹0

𝑘
= 0.009 𝑚 

 

If we plot the (
𝑢𝑚𝑎𝑥

𝐹0
𝑘

) respect to 
𝑡0

𝑇
 (𝑡0= time duration of general force, 𝑇 = Natural period of the 

system, 𝑇 =
2𝜋

𝜔𝑛
), we will have: 

 
This plot showing the maximum response respect to normalized force time duration. In this 

problem, we had 

0.44 

Absolute 

maximum 

0.15
7

 

0
.4 

0
.8 

1.25 
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𝑇 = 0.191 𝑠𝑒𝑐  

𝑡0 = 0.03 𝑠𝑒𝑐  

  

The response spectrum is a plot that can give you quickly the maximum dynamic response for any 

values of (
𝑡0

𝑇
). This plot give you lots of information. From this plot, the (

𝑢𝑚𝑎𝑥
𝐹0
𝑘

) would be equal 

0.44 for  
𝑡0

𝑇
= 0.157. For this type of loading which was discussed in this example, for (

𝑡0

𝑇
) = 0.4, 

the maximum response of system would be equal to static displacement. In the other words, for 

any shock loading with the shape look like this example, as long as (
𝑡0

𝑇
) ≤ 0.4, the dynamic 

response would never exceed the corresponding static displacement! Also, from this graph, we can 

see for (
𝑡0

𝑇
) = 0.8, we will have the absolute maximum dynamic response! Form this graph, we 

can quickly find what would be the critical time duration for force (𝑡0). Also, for (
𝑡0

𝑇
) > 0.8, the 

dynamic response would be oscillate between 1-1.25 of static displacement. The shock spectrum 

is available for a wide range of short duration loadings and these plots can be used for all kinds of 

practical research purposes. 

 

Example 38: Set up Shock Spectrum/Response Spectrum for following forcing function. 

 

 

 

𝑢(𝑡) =
1

𝑚𝜔𝑛
∫ 𝑓(𝜏)

𝑡

0

 𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝜏) 𝑑𝜏 

 

𝑓(𝜏) = {

𝐹0

𝑡0
𝜏           0 < 𝑡 < 𝑡0

   
        𝐹0                   𝑡0 < 𝑡            

 

 

𝑡0

𝑇
= 0.157 
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If we solve it for both regions, we will find the responses equal to:  

Region 1: 

𝑢(𝑡) =
𝐹0

𝑘
(

𝑡

𝑡0
−

 𝑠𝑖𝑛 𝜔𝑛𝑡

𝜔𝑛𝑡0
)  

Region 2: 

𝑢(𝑡) =
𝐹0

𝑘
(1 +

𝑠𝑖𝑛 𝜔𝑛(𝑡 − 𝑡0)

𝜔𝑛𝑡0
−

 𝑠𝑖𝑛 𝜔𝑛𝑡

𝜔𝑛𝑡0
)  

Now, we want to plot the 𝑢𝑚𝑎𝑥 vs (
𝑡0

𝑇
). We can find the 𝑢𝑚𝑎𝑥by taking derivative of previous 

equations, equate to zero, find 𝑡 values, substitute these values back in 𝑢(𝑡) to find the 𝑢𝑚𝑎𝑥. After 

solving for both regions, the 𝑢𝑚𝑎𝑥 would be: 

 

𝑢𝑚𝑎𝑥 =
𝐹0

𝑘
[1 +

√2(1 − 𝑐𝑜𝑠 𝜔𝑛𝑡0)

𝜔𝑛𝑡0
] 

 

Then, based on the 𝑢𝑚𝑎𝑥, we can plot the shock spectrum for this type of force and use it for other 

experiments (e.g. earthquake, blast loads, etc).  
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Two Degree of Freedom Systems 

For single degree of freedom systems we assumed that the overall deformation of structure can be 

demonstrate by looking at a single location in the structure. In general this assumption is not true! 

Especially if you have vibration that goes to higher frequency of the excitation (e.g. a long beam 

which is moving very fast).  

 

In fact, any structure made of infinite number of D.O.F. To solve this problem, one way is 

considering structure as continues system and study the vibration of continues systems (it is a little 

difficult to study). The alternative option would be making an assumption that the structure made 

of finite degrees of freedom (finite number of lumped masses) which each one move in different 

directions (multi degree of freedom system). The M.D.O.F. give you more accurate and better 

understanding about the way structure deform. The study of M.D.O.F. is required using matrix 

analysis. To make it easier and more understandable, before talking about M.D.O.F. systems, let’s 

start with two D.O.F. systems. 

Study of two D.O.F. systems is easy way to introduce the fundamental concepts of M.D.O.F. 

systems. For instance “Modal Coordinates”, “Orthogonality of Modes”, “Modal transformation”, 

“Mode Shapes”, etc. 

Multi Degree of Freedom System 

Single Degree of Freedom System 
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The following picture shows the most general case for a 2 D.O.F system. This system includes two 

masses (𝑚1 & 𝑚2) and each of these masses subjected to separate forcing function 𝑓1(𝑡) & 𝑓2(𝑡). 

Because of these forcing functions, each mass is experiencing a displacement respect to a base (𝑢1 

& 𝑢2). Also, this base is moving respect to a reference frame. The 𝑢1 & 𝑢2 are relative 

displacement for masses (respect to the base) and we can show the absolute displacement of masses 

with (𝑧1 & 𝑧2) (respect to the reference frame). 

 

 

In order to drive the equation of motion for this 2 D.O.F. system, there are two approaches: 1) 

Newton’s law 2) Lagrange’s Formula 

 

1) Newton’s law (Dynamic equilibrium, F.B.D, and D’Alembert force, etc.)  

In this case we have two free body diagrams. 

 

For each of these free body diagrams, we can write the equation of equilibrium. 

1 2 
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1)  𝑚1𝑧̈1 = 𝑓1 + 𝑓𝑘2 + 𝑓𝑐2 − 𝑓𝑘1 − 𝑓𝑐1 

2)  𝑚2𝑧̈2 = 𝑓2 − 𝑓𝑘2 − 𝑓𝑐2 

𝑓𝑘1 = 𝑘1𝑢1   ,   𝑓𝑘2 = 𝑘2(𝑢2 − 𝑢1)    ,    𝑓𝑐1 = 𝑐1𝑢̇1    ,     𝑓𝑐2 = 𝑐2(𝑢̇2 − 𝑢̇1)  

𝑧1 = 𝑢1 + 𝑦          &            𝑧2 = 𝑢2 + 𝑦  

 

𝑚1𝑢̈1 + (𝑐1 + 𝑐2)𝑢̇1 − 𝑐2𝑢̇2 + (𝑘1 + 𝑘2)𝑢1 − 𝑘2𝑢2 = 𝑓1 −𝑚1𝑦̈ 

𝑚2𝑢̈2 − 𝑐2𝑢̇1 + 𝑐2𝑢̇2 − 𝑘2𝑢1 + 𝑘2𝑢2 = 𝑓2 −𝑚2𝑦̈ 

 

1. 𝑦̈ is input acceleration  

 

Practice: Write the equation of motion in term of absolute displacement. 

 

𝑚1𝑧̈1 + (𝑐1 + 𝑐2)𝑧̇1 − 𝑐2𝑧̇2 + (𝑘1 + 𝑘2)𝑧1 − 𝑘2𝑧2 = 𝑓1 + 𝑘1𝑦 + 𝑐1𝑦̇ 

𝑚2𝑧̈2 − 𝑐2𝑧̇1 + 𝑐2𝑧̇2 − 𝑘2𝑧1 + 𝑘2𝑧2 = 𝑓2 

 

 

 

For S.D.O.F system, we had one equation in terms of one variable, so we use homogenous 

deferential equation of second order and solve it directly. But in this case, we have two equations 

and two variables (𝑢1 & 𝑢2) and in each of them we have both variables (they are coupled). 

Therefore, we cannot solve these equations independently/directly.   

In this case, it is possible to transform these two equations to another coordinate system where 

these equations become decoupled (each equation only in term of one variable) and solve the 

equations there and return them back to original coordinate system. 

Note: In the S.D.O.F. we only have a single natural frequency for system. In multi degree of 

freedom systems, system doesn’t have just one fundamental frequency but can vibrate under the 

action of load which excite the system in multi frequencies (the first frequency called fundamental 

frequency, and higher frequency called second mode, third mode,…). 

    

 

Equations of motion in 

terms of relative 

displacements (𝑢1&𝑢2) 

Equations of motion in 

terms of absolute 

displacements (𝑧1&𝑧2) 

In terms of applied forces 
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Example 39: The following figure showing a two story building. The columns are rigidly 

connected to the masses 𝑚1 & 𝑚2. The columns for each level of this building have same stiffness. 

Find the equation of motion for this building. 

 

This is an undamped two degree of freedom system (𝑐 = 0). First of all, let’s find the equivalent 

stiffness for each level of this building. Columns are parallel to each other, so: 

 

For level 1:         𝑘1 =
12𝐸1𝐼1

𝑙1
3                    𝑘𝑒𝑞1 =

24𝐸1𝐼1

𝑙1
3  

For level 2:         𝑘2 =
12𝐸2𝐼2

𝑙2
3                    𝑘𝑒𝑞2 =

24𝐸2𝐼2

𝑙2
3  

In this case, we only look at the free vibration of the system. Also, we don’t have a base motion. 

So, based on these information and from the general formulation for two degree of freedom 

systems, the equations of motion for this system would be: 

 

𝑚1𝑢̈1 + (𝑐1 + 𝑐2)𝑢̇1 − 𝑐2𝑢̇2 + (𝑘1 + 𝑘2)𝑢1 − 𝑘2𝑢2 = 𝑓1 −𝑚1𝑦̈ 

𝑚2𝑢̈2 − 𝑐2𝑢̇1 + 𝑐2𝑢̇2 − 𝑘2𝑢1 + 𝑘2𝑢2 = 𝑓2 −𝑚2𝑦̈ 

 

𝑚1𝑢̈1 + (𝑘1 + 𝑘2)𝑢1 − 𝑘2𝑢2 = 0 

𝑚2𝑢̈2 − 𝑘2𝑢1 + 𝑘2𝑢2 = 0 

 

However, in this case, we had translational motion for both movements, what happened if we 

have one translational and one rotational motion? 

0 0 0 

0 0 0 

0 

0 

Equation of motion 



ME 4440-5540 Lecture 35 
 

1 
 

Two Degree of Freedom Systems 

Example 40: The following figure showing the model of a car. Suspension system of this car 

showing with two springs with stiffness of 𝑘1& 𝑘2. This car experience both translational and 

rotational motions. Find the equation of motion for this car. 

 

(CG: Center of Gravity of the car) 

 

Free Body Diagram: 
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To set up the equation of motion, we will have: 

∑ 𝐹𝑦 = 0  

∑ 𝑀𝐶𝐺 = 0  

𝑓𝑘1
= 𝑘1𝑑1       &      𝑓𝑘2

= 𝑘2𝑑2  

𝑚1𝑢̈1 + 𝑓𝑘1
+ 𝑓𝑘2

= 0  

𝐼𝑢̈2 + 𝑓𝑘1
. 𝑙1 − 𝑓𝑘2

. 𝑙2 = 0  

 

However, we want to express the above equations in terms of 𝑢1& 𝑢2. 

 

𝜃 = 𝑢2 =
𝑑1−𝑑2

𝑙
        &       

𝑢1−𝑑2

𝑑1−𝑑2
=

𝑙2

𝑙
  

We can use these two relations to write the equation of motion in terms of 𝑢1& 𝑢2.      

𝑑1 = 𝑢1 − 𝑢2𝑙2 + 𝑢2𝑙                  𝑑1 = 𝑢1 + 𝑢2𝑙1 

𝑑2 = 𝑢1 − 𝑢2𝑙2  

𝑓𝑘1
= 𝑘1𝑑1 = 𝑘1(𝑢1 + 𝑢2𝑙1)       &       𝑓𝑘2

= 𝑘2(𝑢1 − 𝑢2𝑙2) 

 

𝑚1𝑢̈1 + (𝑘1 + 𝑘2)𝑢1 + (𝑘1𝑙1 − 𝑘2𝑙2)𝑢2 = 0  

𝐼𝑢̈2 + (𝑘1𝑙1 − 𝑘2𝑙2)𝑢1 + (𝑘1𝑙1
2 + 𝑘2𝑙2

2)𝑢2 = 0  

1 

2 

2 

1 

Equation of motion 



ME 4440-5540 Lecture 35 
 

3 
 

1) Lagrange’s Equation 

This method is very general and you don’t need a F.B.D. and doesn’t matter if we are working 

with flexible structure or rigid body. Lagrange’s dynamics, itself is an advance course and here 

we will briefly talk about this approach (we will not go through all details, steps, energy 

methods, etc.).  

 

If you have a system with 𝑞𝑖 number of degrees of freedom (generalized coordinates), if you 

use this approach, you can drive equation of motion for all degrees of freedom. Lagrange 

stablish by “L” which is equal to difference between kinetic energy and potential energy. 

 

𝐿 =  𝑘𝑒 − 𝑝𝑒 

Following formula which is derived based on energy method can be used directly to drive the 

equation of motion. 

  

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 0 

 

Note: for two degrees of freedom system 𝑖 = 1,2, and “𝑞” is equivalent “𝑢” (displacement in 

this case) 

Note: This approach same as all other energy methods is only applicable to conservative 

systems (no damping or damping is negligible).  

 

Example 41: The following figure shows a vehicle (𝑚1) connected to a wall with a spring with 

the stiffness of 𝑘 and moving along direction 𝑢1. Mass (𝑚2) with a massless rod with length 

of 𝑙 is attached to this vehicle. When the vehicle is moving, 𝑚2 is also moving (𝑢2). In this 

case we have two degrees of freedom (two generalized coordinates). Find two equations of 

motion for this system. 
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First, we have to set up kinetic and potential energies. 

 

In this case, we have both translational and rotational motions. To write the kinetic & 

potential energies, we will find the translational coordinates of rotational motion of  𝑚2 (𝑧𝑥 

& 𝑧𝑦) 

 

 
 

𝑘𝑒 =
1

2
𝑚𝑣2 =

1

2
𝑚1𝑢̇1

2 +
1

2
𝑚2(𝑧̇𝑥

2 + 𝑧̇𝑦
2)  

 

𝑧𝑥 = 𝑢1 + 𝑙 𝑠𝑖𝑛 𝑢2              𝑧̇𝑥 = 𝑢̇1 + 𝑙 𝑢̇2 𝑐𝑜𝑠 𝑢2 

𝑧𝑦 = 𝑙 𝑐𝑜𝑠 𝑢2               𝑧̇𝑦 = −𝑙 𝑢̇2 𝑠𝑖𝑛 𝑢2 

 

𝑘𝑒 =
1

2
𝑚1𝑢̇1

2 +
1

2
𝑚2[(𝑢̇1 + 𝑙 𝑢̇2 cos 𝑢2)2 + (−𝑙 𝑢̇2 sin 𝑢2)2]  

 

𝑘𝑒 =
1

2
𝑚1𝑢̇1

2 +
1

2
𝑚2(𝑢̇1

2 + 𝑙2𝑢̇2
2 + 2𝑙𝑢̇1𝑢̇2 cos 𝑢2)  

 

ℎ = 𝑙 − 𝑙 cos 𝑢2 = 𝑙(1 − cos 𝑢2)   
 

𝑝𝑒 =
1

2
𝑘𝑥2 + 𝑚𝑔ℎ =

1

2
𝑘𝑢1

2 + 𝑚2𝑔𝑙(1 − cos 𝑢2)   

 

𝐿 = 𝑘𝑒 − 𝑝𝑒  

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 0 

𝑖 = 1:                

 
𝜕𝐿

𝜕𝑢̇1
= 𝑚1𝑢̇1 + 𝑚2𝑢̇1 + 𝑚2𝑙𝑢̇2 cos 𝑢2            (There is no 𝑢̇1 in 𝑝𝑒) 

If 𝑢2 be a small angle           
𝜕𝐿

𝜕𝑢̇1
= 𝑚1𝑢̇1 + 𝑚2𝑢̇1 + 𝑚2𝑙𝑢̇2 cos 𝑢2 ≅ (𝑚1 + 𝑚2)𝑢̇1 + 𝑚2𝑙𝑢̇2 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑢̇1
) = (𝑚1 + 𝑚2)𝑢̈1 + 𝑚2𝑙𝑢̈2  

1 
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𝜕𝐿

𝜕𝑢1
= −𝑘𝑢1                  (There is no 𝑢1 in 𝑘𝑒, “−” sign because of 𝐿 = 𝑘𝑒 − 𝑝𝑒) 

 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑢̇1
) −

𝜕𝐿

𝜕𝑢1
= (𝑚1 + 𝑚2)𝑢̈1 + 𝑚2𝑙𝑢̈2 + 𝑘𝑢1 = 0 

 

 

𝑖 = 2:                

 
𝜕𝐿

𝜕𝑢̇2
= 𝑚2𝑙2𝑢̇2 + 𝑚2𝑙 𝑢̇1 cos 𝑢2             (There is no 𝑢̇2 in 𝑝𝑒) 

If 𝑢2 be a small angle           
𝜕𝐿

𝜕𝑢̇2
= 𝑚2 𝑙2𝑢̇2 + 𝑚2𝑙 𝑢̇1 cos 𝑢2 ≅ 𝑚2 𝑙2𝑢̇2 + 𝑚2𝑙 𝑢̇1 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑢̇2
) = 𝑚2𝑙2𝑢̈2 + 𝑚2𝑙𝑢̈1  

 
𝜕𝐿

𝜕𝑢2
= −𝑚2𝑙𝑢̇1𝑢̇2 𝑠𝑖𝑛 𝑢2 − 𝑚2𝑔𝑙 𝑠𝑖𝑛 𝑢2                    

If 𝑢2 be a small angle           
𝜕𝐿

𝜕𝑢2
= −𝑚2𝑙𝑢̇1𝑢̇2 𝑠𝑖𝑛 𝑢2 − 𝑚2𝑔𝑙 𝑠𝑖𝑛 𝑢2 ≅ −𝑚2𝑔𝑙𝑢2 

 

 

 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑢̇2
) −

𝜕𝐿

𝜕𝑢2
= 𝑚2𝑙2𝑢̈2 + 𝑚2𝑙𝑢̈1 + 𝑚2𝑔𝑙𝑢2 = 0 

 

In this case, if we used Newton’s law, it will be so much harder to solve! 

 

 

1 

𝑢2 𝑢2 0 

Multiplication of two small numbers 
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Two Degree of Freedom Systems 

Matrix form representation of the equation of motion: 

The Equations of motion in terms of relative displacements (𝑢1&𝑢2) can be write as a matrix 

form: 

𝑚1𝑢̈1 + (𝑐1 + 𝑐2)𝑢̇1 − 𝑐2𝑢̇2 + (𝑘1 + 𝑘2)𝑢1 − 𝑘2𝑢2 = 𝑓1 − 𝑚1𝑦̈ 

𝑚2𝑢̈2 − 𝑐2𝑢̇1 + 𝑐2𝑢̇2 − 𝑘2𝑢1 + 𝑘2𝑢2 = 𝑓2 − 𝑚2𝑦̈ 

 

[
𝑚1 0
0 𝑚2

] {
𝑢̈1

𝑢̈2
} + [

𝑐1 + 𝑐2 −𝑐2

−𝑐2 𝑐2
] {

𝑢̇1

𝑢̇2
} + [

−𝑘1 + 𝑘2 −𝑘2

−𝑘2 𝑘2
] {

𝑢1

𝑢2
} = {

𝑓1 − 𝑚1𝑦̈
𝑓2 − 𝑚2𝑦̈

} 

 

 

 

 

So, we can write the equation of motion for M.D.O.F systems like the scalar form that we 

had for S.D.O.F system. However, you have to remember, it is a matrix equation and it is a 

coupled system of differential equation and you have transform it to the normal coordinate to 

decoupled and then solve it. 

 

𝑀. 𝑢̈ + 𝐶𝑢̇ + 𝐾𝑢 = 𝑓 

 

 

State-Space formulation: The second order differential equation is not easy to solve, so we 

will do a variable substitution and convert it to the first order differential equation. 

 

Just imagine we have: 

 

𝑢 = {
𝑢1

𝑢2
}    ,   𝑢̇ = {

𝑢̇1

𝑢̇2
}   ,    𝑢̈ = {

𝑢̈1

𝑢̈2
} 

 

If we define Z vector as: 

 

𝑍 = {
𝑧1

𝑧2
}       ,      𝑧1 = {

𝑢1

𝑢2
}     ,    𝑧2 = {

𝑢̇1

𝑢̇2
}        𝑧̇2 = {

𝑢̈1

𝑢̈2
} 

 

Note: From matrix algebra multiplication of a matrix to its invers would be equal to an 

identity matrix. 

 

Mass 

Matrix 

 
([𝑀] or 𝑀) ~ 

Acceleration 

Vector  

 

Damping 

Matrix 

 (Diagonal matrix) 

([𝐶] or 𝐶) ~ 

Stiffness 

Matrix 

 
([𝐾] or 𝑘) ~ 

Velocity 

Vector  

 

Displacement 

Vector  

 ~ 
𝑢 𝑢̇ 

~ ~ 
𝑢̈ 

Forcing 

Function 

Vector  

 
𝑓 
~ 

~ ~ ~ ~ ~ ~ ~ 
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𝐴. 𝐴−1 = [𝐼] = [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

] 

 

Based on above information, if we multiply the equation of motion by 𝑀−1: 

 

𝑢̈ + 𝑀−1𝐶𝑢̇ + 𝑀−1𝐾𝑢 = 𝑀−1𝑓 

 

𝑢̈ = −𝑀−1𝐶𝑢̇ − 𝑀−1𝐾𝑢 + 𝑀−1𝑓 

 

Now, if we use State-Space formulation, we can convert it to the first order differential 

equation. Then, just we need to take one integration to find 𝑧1& 𝑧2. 

 

𝑧̇2 = −𝑀−1𝐶𝑧2 − 𝑀−1𝐾𝑧1 + 𝑀−1𝑓 

 

In general form we can write it: 

𝑧 = {
𝑧1

𝑧2
} = {

𝑢1

𝑢2

𝑢̇1

𝑢̇2

}       ,           𝑧̇ = 𝐴𝑧 + 𝐵𝑓  ,   𝐴 = [
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶
]  ,  𝐵 = [

0
𝑀−1] 

MDOF: In this part we will see all tools to cover the concepts and formulation for two degree 

of freedom system which would be same formulation for multi degree of freedom system (just 

matrix has larger dimension). We have Undamped, damped, free vibration and forced vibration 

same as S.D.O.F. system but in this course we just cover Undamped free vibration case. 

Undamped Free Vibration: 

 
From before, the equation of motions would be: 

𝑚1𝑢̈1 + (𝑘1 + 𝑘2)𝑢1 − 𝑘2𝑢2 = 0 

𝑚2𝑢̈2 − 𝑘2𝑢1 + 𝑘2𝑢2 = 0 

These are two simultaneously linear homogeneous differential equations. In S.D.O.F. system, 

we assumed the solution would be a harmonic function, took first and second derivative of 

that and put it back in the equation and try to find constant value “𝐴” and “𝜔”. We will do 

exactly same thing for two D.O.F. system, with only difference we have two harmonic 

functions. 

 

~ ~ ~ ~ ~ ~ ~ ~ ~ 

~ ~ ~ ~ ~ ~ ~ ~ ~ 

~ ~ ~ ~ ~ ~ ~ ~ ~ 

~ ~ ~ ~ ~ ~ ~ ~ 
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𝑢1 = 𝐴1 𝑠𝑖𝑛 𝜔𝑡    &     𝑢2 = 𝐴2 𝑠𝑖𝑛 𝜔𝑡 

 

If we take first and second derivatives and put them back in the equations of motion, we will 

have a homogenous set of equations. 

 

𝑚1(−𝜔2𝐴1)𝑠𝑖𝑛 𝜔𝑡 + (𝑘1 + 𝑘2)𝐴1 𝑠𝑖𝑛 𝜔𝑡 − 𝑘2𝐴2 𝑠𝑖𝑛 𝜔𝑡 = 0 

𝑚2(−𝜔2𝐴2)𝑠𝑖𝑛 𝜔𝑡 − 𝑘2𝐴1 𝑠𝑖𝑛 𝜔𝑡 + 𝑘2𝐴2 𝑠𝑖𝑛 𝜔𝑡 = 0 

 

{
(−𝜔2𝑚1 + 𝑘1 + 𝑘2)𝐴1 − 𝑘2𝐴2 = 0

−𝑘2𝐴1 + (−𝜔2𝑚2 + 𝑘2)𝐴2 = 0
 

 

From matrix algebra there is no unique solution for homogeneous set of simultaneous 

equations. In other words, you cannot solve for two variables 𝐴1& 𝐴2 because they are not 

independent. Only we can do is finding the ratios of those two variables! 

 

There are many different ways that we can solve system of homogeneous, simultaneous 

equation. One way of solving a set of homogeneous, simultaneous equation is Cramer’s rule. 

Example:  

{
𝑎1𝑥1 + 𝑎2𝑥2 = 0
𝑏1𝑥1 + 𝑏2𝑥2 = 0

 

 

[
𝑎1 𝑎2

𝑏1 𝑏2
] {

𝑥1

𝑥2
} = {

0
0

}            𝑥𝑖 =
𝑑𝑒𝑡|𝐴𝑖|

𝑑𝑒𝑡|𝐴|
     

  

 

 For instance:  𝑥2 =
𝑑𝑒𝑡|

0 𝑎1
0 𝑏1

|

𝑑𝑒𝑡|
𝑎1 𝑏1
𝑎2 𝑏2

|
 

 

 

𝑥2 =
𝑑𝑒𝑡 |

0 𝑎1

0 𝑏1
|

𝑑𝑒𝑡 |
𝑎1 𝑏1

𝑎2 𝑏2
|

=
0

0
 

 

 

For our case: 

 

𝑑𝑒𝑡 |
−𝜔2𝑚1 + 𝑘1 + 𝑘2 −𝑘2

−𝑘2 −𝜔2𝑚2 + 𝑘2

| = 0 

 

𝐴 

𝑠𝑖𝑛 𝜔𝑡 ≠ 0 

 

0 
We will have trivial solution, for 

𝑥1 & 𝑥2 = 0 or non-trivial 

solution for: 𝑑𝑒𝑡 |
𝑎1 𝑏1

𝑎2 𝑏2
| = 0 

0 

0 
That means 𝑥2 ≠ 0 
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This determinant consists of some system parameters (𝑚1, 𝑚2, 𝑘1, 𝑘2), and it is the function of 

frequency (𝜔). We show this equation with 𝐷(𝜔) = 0 and it is named:  frequency equation. 

This would be a quadratic equation in terms of (𝜔2) and it will have two solutions for 

frequencies corresponding to this two degree of freedom system. 

 

(−𝜔2𝑚1 + 𝑘1 + 𝑘2)(−𝜔2𝑚2 + 𝑘2) − 𝑘2
2 = 0 

 

. 

. 

. 

 

𝜔1,2
2 =

1

2
(

𝑘1 + 𝑘2

𝑚1
+

𝑘2

𝑚2
) ∓ √

1

4
(

𝑘1 + 𝑘2

𝑚1
+

𝑘2

𝑚2
)

2

−
𝑘1𝑘2

𝑚1𝑚2
 

 

These roots are the frequency associated with those two degrees of freedom. Now to solve for 

𝐴1 & 𝐴2, we need to substitute these 𝜔 values to the main equations. However, when we have 

a homogenous set of equation, the equations are not independent! So, you can use only one of 

those equations and divide it by one of the variables (𝐴1 or 𝐴2) and we just able to find the 

ratio of those two variables (relative value of those variables not the actual value (
𝐴1

𝐴2
 or 

𝐴2

𝐴1
)). 

For instance for 𝜔1 you will find a value for 
𝐴2

𝐴1
 and for 𝜔2 you will find another value for 

𝐴2

𝐴1
. 

Usually, we normalized 
𝐴2

𝐴1
 with putting 𝐴1 = 1. Each frequency shows how the structure 

deformed based on that frequency. The displacement based on 𝜔1 and its corresponding ratio 

of 
𝐴2

𝐴1
 is named “first mode” and displacement related to 𝜔2 and its corresponding ratio of 

𝐴2

𝐴1
 is 

named “second mode”. In two degree of freedom we have two frequencies which are the 

natural frequencies of the system. The first frequency is called “fundamental frequency” and 

higher frequencies correspond to higher modes. 

 

Example: If we have a beam with two lump mass the first and second modes would be: 

 

 
 

 

First Mode Second Mode 
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Two Degree of Freedom Systems 

Example 42: There is a two story building with the weight of 𝑊1& 𝑊2 for first and second 

floors respectively. The columns in each floor has same stiffness. Assume 𝑊1 = 𝑊2 = 𝑊, 𝐼1 =
2𝐼2 = 𝐼 (second moment of area for the columns), and 𝑙1 = 𝑙2 = 𝑙. 

 

 
 

Free Body Diagram: 

 

 

𝑘1 = 2 (
12𝐸𝐼

𝑙3 )      

𝑘2 =
𝑘1

2
= (

12𝐸𝐼

𝑙3 )  
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From the equation of motion that we have for undamped-free vibration: 

 

𝑚1𝑢̈1 + (𝑘1 + 𝑘2)𝑢1 − 𝑘2𝑢2 = 0 

𝑚2𝑢̈2 − 𝑘2𝑢1 + 𝑘2𝑢2 = 0 

 

{
𝑢̈1 + 3𝐵𝑢1 − 𝐵𝑢2 = 0
𝑢̈2 + 𝐵𝑢2 − 𝐵𝑢1 = 0

      ,       𝐵 = (
12𝐸𝐼𝑔

𝑊𝑙3 ) 

𝑢1 = 𝐴1𝑠𝑖𝑛 𝜔𝑡 

𝑢2 = 𝐴2𝑠𝑖𝑛 𝜔𝑡 

{
−𝐴1𝜔2 + 3𝐵𝐴1 − 𝐵𝐴2 = 0

−𝐴2𝜔2 + 𝐵𝐴2 − 𝐵𝐴1 = 0
 

If we substitute 𝑢1& 𝑢2 in equations of motion and find the determinant, we will have:  

𝑑𝑒𝑡 |−𝜔2 + 3𝐵 −𝐵
−𝐵 −𝜔2 + 𝐵

| = 0 

 

We need to solve for the roots of this determinant to find the frequencies of system. 

𝜔4 − 4𝐵𝜔2 + 2𝐵2 = 0 

  

𝜔2 = {
0.586 𝐵
3.414 𝐵

 

 

* As a numerical example, let’s assume 
𝐸𝐼𝑔

𝑊𝑙3 = 2, then we will have: 

𝜔1 = 3.75 𝑟𝑎𝑑/𝑠 

𝜔2 = 9.05 𝑟𝑎𝑑/𝑠 

Now, for finding  𝐴1 & 𝐴2, we have to substitute these 𝜔 values in one of the equation of 

motions (two equations are dependent) and divide it by one of the variables (𝐴1).  

−𝐴1𝜔2 + 3𝐵𝐴1 − 𝐵𝐴2 = 0                  −𝜔2 + 3𝐵 − 𝐵 (
𝐴2

𝐴1
) = 0          

 

         𝐴2 =
−𝜔2+3𝐵

𝐵
𝐴1                                     𝐴2 =

−𝜔2+3𝐵

𝐵
 

 

 

𝜔1
2 = 0.586 𝐵     {

𝐴1 = 1
𝐴2 = 2.414

 

𝜔2
2 = 3.414 𝐵     {

𝐴1 = 1
𝐴2 = −0.414

 

If we take 𝐴1 = 1 
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𝜔1 and 𝜔2 are the natural frequencies and 𝐴1& 𝐴2 are the shapes corresponding to each 

natural frequencies which we call them mode shapes.  

 

 

Node: There is point along the structure that doesn’t move (stay stationary). In other words, node 

is a point on the structure which is experiences zero deformation (is not subjected to any dynamic 

force, no displacement, no stresses, etc). The number of nodal points is depends on what modes of 

vibration we are consider, higher modes having more nodal points.  

 

Summary of Steps: 

1) Set up the equation of motion 

2) Consider a solution of type 𝑢𝑖 = 𝐴𝑖𝑠𝑖𝑛 𝜔𝑡  (for two D.O.F. 𝑖 = 1,2) and substitute it in 

equation of motion 

3) Consider the determinant of coefficient for part (2) equal zero (𝐷(𝜔) = 0 , frequency 

equation) 

4) Find the roots of frequency equation (frequency of the system) 

5) Substitute these roots in one of the equations in part (2) and for each value of (𝜔) find 

the corresponding relative deformed shapes (i. e.
𝐴2

𝐴1
)   

6) Plot 𝐴1 & 𝐴2 (𝐴1 = 1) for each 𝜔 (mode shapes) 

 

 

 

 

 

 

 

 

Mode Shape 1 Mode Shape 2 

Node 



ME 4440-5540 Lecture 37 
 

4 
 

Mode Shape 

For a free vibration of an undamped system, if we follow the steps: 

𝑀. 𝑢̈ + 𝐾𝑢 = 0 

𝑀 : Mass matrix 

𝐾 : Stiffness matrix 

𝑢 : Vector of displacement 

𝑢𝑖 = ∅𝑖 𝑠𝑖𝑛 𝜔𝑡    (We use ∅𝑖 rather than 𝐴𝑖) 

     

   Substitute (2) in to (1) and set the eigenvalue problem 

(𝐾 − 𝜔2. 𝑚). {Փ𝑖} = {0} 

Note: From the matrix algebra the following equation is named eigenvalue equation:  

(𝐴 − 𝜆. 𝐼). {𝑥} = {0} 

We can rewrite the equation from (3) by pre-multiply by 𝑚−1: 

 

(𝑚−1𝐾). {Փ𝑖} = 𝜔2. {Փ𝑖} 

{Փ𝑖} = {
∅1𝑖

∅2𝑖
} 

 

 

 

For instance ∅11 is shape for D.O.F. “1” for mode frequency “1”. In other words, for two degree 

of freedom system, we will have  ∅11 &  ∅21 for 𝜔1 and ∅21 &  ∅22 for  𝜔2 as we discussed before. 

The 𝜔′𝑠 (frequencies) are “Eigenvalues” and ∅′𝑠 (Mode Shapes) are “Eigenvectors”. 

𝜔1 : {
∅11

∅21
} 

𝜔2 : {
∅21

∅22
} 

{Փ} = [{Փ1}, {Փ2}, … . , {Փ𝑛}] 

 

~ ~ ~ 

~ 

~ 

~ 

~ 

~ 1)  

2)  

3)  

~ ~ 

~ ~ 

~ ~ 

D.O.F. 
Frequency 

Eigenvectors  

(Mode shapes) 

Eigenvalues 

Mode shape matrix 
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    From (𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠) = 0 , find the 𝜔′𝑠 (frequencies)   

 

   Substitute the 𝜔′𝑠 in equation (3), and find corresponding mode shape (∅′𝑠) 

{Փ𝑖} = {
∅1𝑖

∅2𝑖
} 

 

 

 

4)   

5)   
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Two Degree of Freedom Systems 

Properties of Mode Shapes: 

1. Mode Shapes are invariant with respect to a constant. That means if you have a mode shape 

(modal Metrix) Փ𝑖, it would be same as 𝑐 × Փ𝑖. 

{Փ𝑖} = {
∅1𝑖

∅2𝑖
}                    {Փ𝑖} = {

𝑐 ∅1𝑖

𝑐 ∅2𝑖
} 

2.  

2.1. Mode shapes are orthogonal with respect to each other relative to mass or stiffness 

matrices. Based on definition of orthogonality, we will have:   

 

{Փ1}𝑇[𝑚]{Փ2} = 0 

{Փ1}𝑇[𝑘]{Փ2} = 0 

And in general: 

{Փ𝑖}𝑇[𝑚]{Փ𝑗} = 0 

{Փ𝑖}𝑇[𝑘]{Փ𝑗} = 0 

 

2.2. Mode shapes are not orthogonal with respect to themselves & relative to mass or 

stiffness matrices. However, in relation to mass matrix that would be equal to a constant 

matrix (a diagonal matrix) and for stiffness would be equal to multiplication of that 

constant matrix to 𝜔2. 

In general: 

{Փ𝑖}𝑇[𝑚]{Փ𝑖} = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = [
𝑀1 0

⋱
0 𝑀𝑖

] 

{Փ𝑖}𝑇[𝑘]{Փ𝑖} = 𝜔2 [
𝑀1 0

⋱
0 𝑀𝑖

] 

[
𝑀1 0

⋱
0 𝑀𝑖

] = 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑀𝑎𝑠𝑠 𝑀𝑎𝑡𝑟𝑖𝑥 (𝑚𝑜𝑑𝑎𝑙 𝑀𝑎𝑠𝑠 𝑀𝑎𝑡𝑟𝑖𝑥)  

 

~ 

~ 
(𝒊 ≠ 𝒋) 

~ 

~ 

(𝒊 ≠ 𝒋) 
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Note: The property # 2 is very important and in order to verify if the mode shape and frequency 

that we calculated for the system are correct the relationships in the property number #2 must 

hold. 

Normalization of Mode Shapes 

Mode shape represents the quality shape of the deformation. There are several approaches to 

normalize the mode shapes. 

1. Set ∅1 = 1 & find other relative displacement with respect to that. 

 

𝑥1

𝑥2
            𝑥1 = 1              𝑥2 =? 

2. Consider the maximum value of each mode & set that equal to 1. 

 

3. Set modal mass corresponding to each mode equal to 1. 

 

{Փ𝑖}
𝑇[𝑘]{Փ𝑖} = [

𝑀1 0

⋱
0 𝑀𝑖

] 

 

Note: Between these three approaches, last one is most commonly used especially in finite element 

code because need less computation.  

 

Example 43: Consider the following two degree of freedom system. This system is consist of a 

rigid bar attached to a spring at one end and pivot at the other end. A mass (𝑚) with a spring is 

connected to the bar in the point with a distance of 𝑙1 from the pivot. The bar has a mass of 𝑚𝑏𝑎𝑟 

and total length of 𝑙2. Whole system start oscillating. Find the mode shapes, corresponding 

frequencies, and check if the mode shape are orthogonal with respect to each other. Assume 𝑦 <
𝑙1𝜃 (the spring is in compression).  

There are some relations between parameters in this problem (a, b, c are constant values): 

𝑙1 = 𝑎𝑙2 = 𝑙  

𝑘2 = 𝑏𝑘1  

𝑚𝑏𝑎𝑟 = (3𝑚). 𝑐  

Ω2 =
𝑘1

𝑚
  

 

1 

Find the relation for the rest of them 
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Free body diagram:  

 

Step 1: Equation of Motions 

1)  

𝑚𝑦̈ − 𝑓𝑘1
= 0 

𝑓𝑘1
= 𝑘1(𝑙1𝜃 − 𝑦) 

𝑚𝑦̈ + 𝑘1𝑦 − 𝑘1𝑙1𝜃 = 0 

 

2)   

∑ 𝑀𝐴 = 0  

𝐼𝜃̈ + 𝑓𝑘1
(𝑙1) + 𝑓𝑘2

(𝑙2) = 0    

𝑓𝑘2
= 𝑘2(𝑙2𝜃)        &      𝐼 =

1

3
𝑚𝑏𝑎𝑟𝑙2

2
 

𝐼𝜃̈ + 𝑘1(𝑙1𝜃 − 𝑦)𝑙1 + 𝑘2(𝑙2𝜃)𝑙2 = 0    

𝐼𝜃̈ + (𝑘1𝑙1
2 + 𝑘2𝑙2

2)𝜃 − 𝑘1𝑙1𝑦 = 0    

 

1 2 

1st Equation of motion 

A 

2nd Equation of motion 
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Step 2: Find the mode shapes 

 𝑚. 𝑢̈ + 𝑘𝑢 = 0 

𝑚 = [
𝑚 0
0 𝐼

] 

𝑘 = [
𝑘1 −𝑘1𝑙1

−𝑘1𝑙1 𝑘1𝑙1
2 + 𝑘2𝑙2

2] 

𝑢 = {
𝑢1

𝑢2
} = {

𝑦
𝜃

} 

Based on the given relation between parameters, equations of motion would be: 

𝑚𝑦̈ + 𝑘1𝑦 − 𝑘1𝑙1𝜃 = 0 

𝑦̈ + Ω2𝑦 − Ω2𝑙𝜃 = 0 

 

𝐼𝜃̈ + (𝑘1𝑙1
2 + 𝑘2𝑙2

2)𝜃 − 𝑘1𝑙1𝑦 = 0    

𝜃̈ + Ω2 (
𝑎2+𝑏

𝑐
) 𝜃 − Ω2 (

𝑎2

𝑐𝑙
) 𝑦 = 0    

 

{

𝑦̈ + (Ω2)𝑦 − (Ω2𝑙)𝜃 = 0

𝜃̈ − Ω2 (
𝑎2

𝑐𝑙
) 𝑦 + Ω2 (

𝑎2 + 𝑏

𝑐
) 𝜃 = 0

 

 

{

𝑢̈1 + (Ω2)𝑢1 − (Ω2𝑙)𝑢2 = 0

𝑢̈2 − Ω2 (
𝑎2

𝑐𝑙
) 𝑢1 + Ω2 (

𝑎2 + 𝑏

𝑐
) 𝑢2 = 0

 

 

 

In the matrix form: 

 

[
1 0
0 1

] {
𝑢̈1

𝑢̈2
} + Ω2 [

1 −𝑙

−
𝑎2

𝑐𝑙

𝑎2 + 𝑏

𝑐

] {
𝑢1

𝑢2
} = 0 

 

 

 

 

~ ~ ~ ~ 

~ 

~ 

~ 

After simplification 

𝑙1 = 𝑎𝑙2 = 𝑙  

𝑘2 = 𝑏𝑘1  

𝑚𝑏𝑎𝑟 = (3𝑚). 𝑐  

Ω2 =
𝑘1

𝑚
  

𝐼 =
1

3
𝑚𝑏𝑎𝑟𝑙2

2  

 

~ 

𝑚 
𝑘 
~ 

~ 
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Step 3: Find the corresponding frequencies  

𝑑𝑒𝑡(𝐾 − 𝜔2. 𝑚) = 0 

 

𝑑𝑒𝑡 (Ω2 [
1 −𝑙

−
𝑎2

𝑐𝑙

𝑎2 + 𝑏

𝑐

] − 𝜔2 [
1 0
0 1

]) = 𝑑𝑒𝑡 (Ω2 [
1 − 𝜔2 −𝑙

−
𝑎2

𝑐𝑙

𝑎2 + 𝑏

𝑐
− 𝜔2

]) = 0 

Ω2 ≠ 0                   𝑑𝑒𝑡 ([
1 − 𝜔2 −𝑙

−
𝑎2

𝑐𝑙

𝑎2+𝑏

𝑐
− 𝜔2]) = 0 

After simplification: 

𝜔4 − 𝜔2 (
𝑎2 + 𝑏 + 𝑐

𝑐
) +

𝑏

𝑐
= 0 

To be more realistic, let’s give some values to the parameters: 

𝑙1 = 𝑙 = 12.5 𝑐𝑚 = 0.125 𝑚  

𝑙2 = 50 𝑐𝑚 = 0.5 𝑚  

𝑚 = 1 𝑘𝑔  

𝑚𝑏𝑎𝑟 = 0.3 𝑘𝑔  

𝑘1 = 34 𝑁/𝑚  

𝑘2 = 17 𝑁/𝑚   

𝐼 = 0.025 𝑚4   

Ω2 =
𝑘1

𝑚
= 34            

𝑎 =
𝑙

𝑙2
= 0.25  

𝑏 = 0.5  

𝑐 =
𝑚𝑏𝑎𝑟

3
= 0.1  

𝑎2+𝑏+𝑐

𝑐
= 6.625  

𝜔4 − 𝜔2 (
𝑎2+𝑏+𝑐

𝑐
) +

𝑏

𝑐
= 0                  𝜔4 − 6.625 𝜔2 + 5 = 0                𝜔2 = 0.869    ,    5.756 

𝜔1 = 0.932         &         𝜔2 = 2.4          

 

~ ~ 
Find 𝜔′𝑠 
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Step 3: Find the mode shape 

 

([
1 − 𝜔2 −𝑙

−
𝑎2

𝑐𝑙

𝑎2 + 𝑏

𝑐
− 𝜔2

]) {
𝑢1

𝑢2
} = 0 

 

𝜔1 = 0.932                 𝑦 = 1        ,       𝜃 = 1.048 

𝜔2 = 2.4                     𝑦 = 1        ,       𝜃 = −38.048 

 

Step 4: Check if the mode shapes are orthogonal with respect to each other 

 

{Փ1} = {
∅11

∅12
} = {

1
1.048

}                     

 

{Փ2} = {
∅21

∅22
} = {

1
−38.048

}                     

 

{Փ}𝑇[𝑚]{Փ}  

 

[
1 1.048

1 −38.048
] [

1 0
0 0.025

] [
1 1

1.048 −38.048
] = [

1.027 0
0 40

] 

 

 

{Փ1}𝑇[𝑚]{Փ2} 

[1 1.048] [
1 0
0 0.025

] [
1

−38.048
] = [0] 

Both conditions are satisfied and the mode shape are orthogonal with respect to each other. 

 

 

 

 

 

𝑦 

𝜃 

𝑚𝑜𝑑𝑒 𝑠ℎ𝑎𝑝𝑒 1 

𝑚𝑜𝑑𝑒 𝑠ℎ𝑎𝑝𝑒 2 

~ ~ ~ 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑀𝑎𝑠𝑠 
 𝑀𝑎𝑡𝑟𝑖𝑥 
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Finding the Solution for Free Vibration 2nd DOF of an Undamped System 

 

Look at following system. 

 

Let’s go over all steps for this problem. 

For this system, the equations of motion will be: 

𝑚1𝑢̈1 + (𝑘1 + 𝑘2)𝑢1 − 𝑘2𝑢2 = 0 

𝑚2𝑢̈2 − 𝑘2𝑢1 + (𝑘2 + 𝑘3)𝑢2 = 0 

If 𝑚1 & 𝑚2 can oscillate harmonically with same frequency and phase but different amplitude 

then we can say: 

𝑢1 = Փ1𝑐𝑜𝑠 (𝜔𝑡 + 𝜃) 

𝑢2 = Փ2𝑐𝑜𝑠 (𝜔𝑡 + 𝜃) 

Փ1 & Փ2: The maximum amplitudes of 𝑢1& 𝑢2 

With replacing these equations in the equations of motion and simplifying, we will reach: 

[−𝑚1𝜔2 + (𝑘1 + 𝑘2)]Փ1 − 𝑘2Փ2 = 0 

−𝑘2Փ1 + [−𝑚2𝜔2 + (𝑘2 + 𝑘3)]Փ2 = 0 

As you seen before, for finding Փ1 & Փ2, we have to write these equations and make 

determinant of coefficients equal zero. 

𝑑𝑒𝑡 [
[−𝑚1𝜔2 + (𝑘1 + 𝑘2)] −𝑘2

−𝑘2 [−𝑚2𝜔2 + (𝑘2 + 𝑘3)]
] = 0 

𝑢1(𝑡) 𝑢2(𝑡) 

𝑢1(𝑡) 𝑢2(𝑡) 

𝑘3𝑢2 

 

𝑘2(𝑢2 − 𝑢1) 

 

𝑘1𝑢1 

 

Free body diagram: 
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From that determinant, we can find two natural frequencies (𝜔) for system: 

𝜔1
2, 𝜔2

2 =
1

2
[
(𝑘1 + 𝑘2)𝑚2 + (𝑘2 + 𝑘3)𝑚1

𝑚1𝑚2
]

±
1

2
√[

(𝑘1 + 𝑘2)𝑚2 + (𝑘2 + 𝑘3)𝑚1

𝑚1𝑚2
]

2

− 4 [
(𝑘1 + 𝑘2)(𝑘2 + 𝑘3) − 𝑘2

2

𝑚1𝑚2
] 

 

For each of these natural frequencies, we will have different mode shapes (Փ1 & Փ2). 

𝜔1               {Փ1} = {
∅11

∅12
} 

𝜔2               {Փ2} = {
∅21

∅22
} 

However, two equations of motions are homogenous set of equation and they are not independent! 

So, we are only able to find the ratio of 𝑟1 =
∅12

∅11
 & 𝑟2 =

∅22

∅21
. 

𝑟1 =
∅12

∅11
=

[−𝑚1𝜔1
2 + (𝑘1 + 𝑘2)]

𝑘2
=

𝑘2

[−𝑚2𝜔1
2 + (𝑘2 + 𝑘3)]

 

𝑟2 =
∅22

∅21
=

[−𝑚1𝜔2
2 + (𝑘1 + 𝑘2)]

𝑘2
=

𝑘2

[−𝑚2𝜔2
2 + (𝑘2 + 𝑘3)]

 

 

So, the normal modes of vibration corresponding 𝜔1 & 𝜔2 will be: 

 

{Փ1} = {
∅11

∅12
} = {

∅11

𝑟1∅11
} 

{Փ2} = {
∅21

∅22
} = {

∅21

𝑟2∅21
} 

Then, solution for each mode will be: 

  

𝑢1 = {
∅11𝑐𝑜𝑠 (𝜔1𝑡 + 𝜃1)

𝑟1∅11𝑐𝑜𝑠 (𝜔1𝑡 + 𝜃1)
} 

𝑢2 = {
∅21𝑐𝑜𝑠 (𝜔2𝑡 + 𝜃2)

𝑟2∅21𝑐𝑜𝑠 (𝜔2𝑡 + 𝜃2)
} 

The general solution can be obtained by a linear superposition of the two normal modes: 

𝑢 = 𝑐1𝑢1 + 𝑐2𝑢2   

Modal vectors 

1st mode 

2nd mode 
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𝑐1 & 𝑐2 are constant and can be combine with ∅11 & ∅21values (constants). 

𝑢 = {
𝑢1

𝑢2
} = {

∅11𝑐𝑜𝑠 (𝜔1𝑡 + 𝜃1) + ∅21𝑐𝑜𝑠 (𝜔2𝑡 + 𝜃2)

𝑟1∅11𝑐𝑜𝑠 (𝜔1𝑡 + 𝜃1) + 𝑟2∅21𝑐𝑜𝑠 (𝜔2𝑡 + 𝜃2)
} 

However, we still need to find the value for ∅11, ∅21, 𝜃1, and 𝜃2. To obtain these values we have 

to use two initial conditions for each mass (the rest of steps is in the book). The final results will 

be: 

∅11 =
1

(𝑟2 − 𝑟1)
√{𝑟2𝑢1(0) − 𝑢2(0)}2 +

{−𝑟2𝑢̇1(0) + 𝑢̇2(0)}2

𝜔1
2

 

∅21 =
1

(𝑟2 − 𝑟1)
√{−𝑟1𝑢1(0) + 𝑢2(0)}2 +

{𝑟1𝑢̇1(0) − 𝑢̇2(0)}2

𝜔2
2

 

𝜃1 = 𝑡𝑎𝑛−1 [
−𝑟2𝑢̇1(0) + 𝑢̇2(0)

𝜔1[𝑟2𝑢1(0) − 𝑢2(0)]
] 

𝜃2 = 𝑡𝑎𝑛−1 [
𝑟1𝑢̇1(0) − 𝑢̇2(0)

𝜔2[−𝑟1𝑢1(0) + 𝑢2(0)]
] 

 

If in this example we have 𝑘1 = 30, 𝑘2 = 5, 𝑘3 = 0, 𝑚1 = 10, 𝑚2 = 1, and initial conditions of 

𝑢1(0) = 1, 𝑢2(0) = 𝑢̇1(0) = 𝑢̇2(0) = 0, 

 

[
[−𝑚1𝜔2 + (𝑘1 + 𝑘2)] −𝑘2

−𝑘2 [−𝑚2𝜔2 + (𝑘2 + 𝑘3)]
] {

Փ1

Փ2
} = {

0
0

} 

 

[−10𝜔2 + 35 −5
−5 −𝜔2 + 5

] {
Փ1

Փ2
} = {

0
0

} 

 

𝑑𝑒𝑡 [−10𝜔2 + 35 −5
−5 −𝜔2 + 5

] = 0 

 

10𝜔4 − 85𝜔2 + 150 = 0           𝜔1
2 = 2.5    ,    𝜔2

2 = 6          𝜔1 = 1.5811   ,   𝜔2 = 2.4495 

 

𝑟1 =
∅12

∅11
=

[−𝑚1𝜔1
2 + (𝑘1 + 𝑘2)]

𝑘2
=

[−10 × 2.5 + (35)]

5
= 2 



ME 4440-5540 Lecture 39 
 

4 
 

𝑟2 =
∅22

∅21
=

[−𝑚1𝜔2
2 + (𝑘1 + 𝑘2)]

𝑘2
=

[−10 × 6 + (35)]

5
= −5 

 

Normal modes will be: 

{Փ1} = {
∅11

∅12
} = {

∅11

𝑟1∅11
} = {

1
2

} ∅11 

{Փ2} = {
∅21

∅22
} = {

∅21

𝑟2∅21
} = {

1
−5

} ∅21 

Then, solution for each mode will be: 

 

𝑢1 = {
∅11𝑐𝑜𝑠 (1.5811𝑡 + 𝜃1) + ∅12𝑐𝑜𝑠 (2.4495𝑡 + 𝜃2)

𝑟1∅11𝑐𝑜𝑠 (1.5811𝑡 + 𝜃1)
} 

𝑢2 = {
∅21𝑐𝑜𝑠 (𝜔2𝑡 + 𝜃2)

𝑟2∅21𝑐𝑜𝑠 (𝜔2𝑡 + 𝜃2)
} 

 

𝑢 = {
𝑢1

𝑢2
} = {

∅11𝑐𝑜𝑠 (1.5811𝑡 + 𝜃1) + ∅21𝑐𝑜𝑠 (2.4495𝑡 + 𝜃2)

2∅11𝑐𝑜𝑠 (1.5811𝑡 + 𝜃1) − 5∅21𝑐𝑜𝑠 (2.4495𝑡 + 𝜃2)
} 

 

𝑢1(0) = 1 = ∅11𝑐𝑜𝑠 𝜃1 + ∅21𝑐𝑜𝑠 𝜃2 

𝑢2(0) = 0 = 2∅11𝑐𝑜𝑠 𝜃1 − 5∅21𝑐𝑜𝑠 𝜃2 

𝑢̇1(0) = 0 = −1.5811∅11 𝑠𝑖𝑛 𝜃1 − 2.4495∅21 𝑠𝑖𝑛 𝜃2 

𝑢̇2(0) = 0 = −3.1622∅11 𝑠𝑖𝑛 𝜃1 − 12.2475∅21 𝑠𝑖𝑛 𝜃2 

 

∅11𝑐𝑜𝑠 𝜃1 =
5

7
       ,      ∅21𝑐𝑜𝑠 𝜃2 =

2

7
    ,    ∅11 𝑠𝑖𝑛 𝜃1 = 0     ,      ∅21 𝑠𝑖𝑛 𝜃2 = 0 

∅11 =
5

7
      ,    ∅21 =

2

7
      ,     𝜃1 = 0     ,      𝜃2 = 0 

 

𝑢1(𝑡) =
5

7
 𝑐𝑜𝑠 1.5811𝑡 +

2

7
𝑐𝑜𝑠 2.4495𝑡 

𝑢2(𝑡) =
10

7
𝑐𝑜𝑠 1.5811𝑡 −

10

7
𝑐𝑜𝑠 2.4495𝑡 

 

1st mode 

2nd mode 


