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Introduction 
Concepts that you need for this course 

1) Vector Calculus: Trigonometry  

- How to write a vector 

- How to calculate the length of a vector 

- How to compute the angle between two vectors 

- Dot product & cross product 

 

2) Linear Algebra: Matrices, multiplication of vector and matrix 

 

3) Reference frame 

 

4) Derivatives: In addition, to study the position, we will work with velocity, acceleration, 

and higher derivatives in this course 

 

5)  Rigid bodies 

 

6) Statics: Free body diagrams, Force, Moments, etc. 

 

What we will cover in this course 

 

 In this course, we just have a focus on planar linkages while in industry and advanced 

research, there are many spatial linkages. 

 Sawing machine is an example of a planar motion device (two planar motions parallel to 

each other) 

 We will define the components of the linkage like joints, links, different types of joints, 

etc. 

 We will learn how to calculate the degree of freedom (D.O.F) for a linkage. In other 

words, we can find if a linkage can able to move, and if yes, how many actuators are 

required to control its motion? 

 We will study the force, displacement, velocity, and acceleration of the linkages. 

 There are many different designs (linkages) for doing a task, but we are looking for the 

most efficient one! 

 Machine (Mechanical): A machine is a human-made device that uses power to 

apply forces and control movement to perform an action. 

 We will study the quick return mechanism (in one direction going slow when in the other 

direction moving fast) 

 We will study input/output angular motion relation (car steering system). For instance, in 

a 4-wheel drive vehicle, we will have different angles for different wheels. 

https://en.wikipedia.org/wiki/Human-made
https://en.wikipedia.org/wiki/Power_(physics)
https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Motion
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 We will study the 4bar linkages in detail. 

  We will study the slider-crank linkages (rotation to translation motion like car engine 

(cylinder-piston) or for the cases that we need lots of force)   

 We will study the cam linkages (Angular to linear motion with creating a profile) 

 We will see how to design a proper cam to generate the desired motion. 

 We will study gears, chains, and belts. These are used for changing the velocity or torque 

from input to output with a constant ratio. 

 

Definitions 

 

 Kinematics: (Only) Study of motion (don’t care about forces) 

 Dynamics: Forces of systems in Motion 

 Statics: Forces on unmoved systems 

 Machine: A set of elements linked by joints that allow relative motion between them, to 

transmit motion and/or forces. 

There are two possible study processes for any machine: 

a) Analysis: Given a machine, calculate its motion and forces. 

b) Synthesis: (Design process) – Given a motion/forces, create a machine able to do the 

task. 

 

Hypotheses in this course  

 

 We are dealing with rigid bodies (shapes are not changing, no deformation, no break) 

 Most of the time, we will assume the conservation of energy for problems (Only for force 

study sometimes, if in the problem mentioned, we will care about friction) 

 

Power in = Power out 

 

 We will work with planar motion 
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Types of Joints and Degree of Freedom 
 

Machine                          Links + Joints 

 

 Links: Rigid Bodies (It can be in any shape but there is no deformation during motion) 

 Joints: The connection between two surfaces. The shape of the surfaces determines the 

motion. 

 

 

Various Joints 

 

 

Name 

 

Symbol 

 

Example 

 

Kinematic 

Sketch 

 

Type of 

motion 

 

DOF 

 

 

 

Revolute 

(Hinge, Pin) 

 

 

R 

   

Rotation 

(only) about 

an axis 

 

 

1 

 

 

 

Prismatic 

(Slider) 

 

 

P 

 

 

 

 

  

Translation 

(only) along a 

direction 

 

 

1 

 

 

 

Cam 

 

× 

 

 

 

 

 

 

× 

Translation + 

Rotation about 

a point 

 

1 

 

Helical 

(Screw) 

 

 

H 

 

 

 

 

× 

Translation 

along + 

Rotation about 

a point 

 

1 
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 fi = Degree of Freedom of joints 

Degree of Freedom (D.O.F) 

 

 Degree of Freedom (D.O.F): The number of independent parameters needs to uniquely 

define the position of a body at a given instant of time and relative to a reference frame. 

Example: How many parameters do we need to define the position of the following body? 

 

A) 1       

B) 2       

C) 3     

D) 4 

fi=0 fi=1 fi=1 fi=2 

fi=2 fi=3 fi=3 fi=5 

fi=5 fi=6 fi=6 fi=6 
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Rigid body in the plane: 3 D.O.F 

Another way is defining 2 points on the body to be fully defined. 
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�̅�𝟏 = (𝑷𝟏𝒙, 𝑷𝟏𝒚) 

�̅�𝟐 = (𝑷𝟐𝒙, 𝑷𝟐𝒚) 

What is the extra parameter? 

 

The parameters are not independent because: (�̅�𝟐 − �̅�𝟏). (�̅�𝟐 − �̅�𝟏) =  𝒅𝟐 

So, D.O.F is always: 3 
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Spatial motion (3D): 

 What is the D.O.F of the following body? 

 

 

 

 

 

 

 

 

 

3 to locate origin and 3 to define orientation: 6 D.O.F 

 

Mobility (D.O.F) for mechanisms 

 Mobility and D.O.F are equivalent concepts for us. 

 Mobility: Parameters are needed to specify the position of all links of a mechanism. 

Example: For a 4-bar linkage in a planar case, we have 12 parameters (3 for each link) but 

some of them are dependent because they are connected by joints! 

Formula for D.O.F. (planar case): 

1) For each link: 3 parameters 

2) If we have n links: 3n parameters 

3) Subtract the ground link: 3(n-1) parameters 

4) Each joint has 𝑓 degree of freedom           restricts (3-f) degree of freedom for a link 

 

For a linkage with n links (counting the ground) and j joints, having 𝑓𝑖 D.O.F each: 

 

𝑀 = 3(𝑛 − 1) − ∑(3 − 𝑓𝑖)

𝑗

𝑖=1

 

 

 

 

 

 

X 

Z 

Y 

�̅� = (𝑃𝑥 , 𝑃𝑦, 𝑃𝑧) 

D.O.F of 

all Links 

Constraints 

imposed by 

joints 
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Example: Find the mobility of the following mechanism. 

 

 

 

 

 

 
 

 

 

 
 

n= 4   ,   j= 4   ,   fi=1 

 

M= 3×(4-1)-4×(3-1) = 9-8 = 1  

 

 

 

 

 

 

 

 



ME 3320 Lecture 2 
 

7 
 

 

 
Joint D.O.F. (𝑓𝑖)  

(Motion allowed by 

the joint) 

Restriction 2D 

 (3 − 𝑓𝑖) 

Restriction 3D 

(6−𝑓𝑖) 

Revolute (R) 1 3-1=2 6-1=5 

Prismatic (P) 1 2 5 

Cam 2 1 4 

Spherical (S) 3 × 3 

Cylindrical (C) 2 × 

(is not defined in 

the plane) 

4 

 

 

Examples: 

 

1) 
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n = 3    ,     j = 3     ,     𝑓𝑖 = 1 

 

𝑀 = 3(𝑛 − 1) − ∑ (3 − 𝑓𝑖) =  3 × (3 − 1) − 3 × (3 − 1)  =  6 − 6 =  0𝑗
𝑖=1   

 

2)  
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n = 3    ,     j = 2     ,     𝑓𝑖 = 1 

 

𝑀 = 3(𝑛 − 1) − ∑ (3 − 𝑓𝑖) =  3 × (3 − 1) − 2 × (3 − 1)  =  6 − 4 =  2𝑗
𝑖=1   

 

 

 

3) 
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n = 7    ,     j = 8     ,     𝑓𝑖 = 1 

 

𝑀 = 3(𝑛 − 1) − ∑ (3 − 𝑓𝑖) =  3 × (7 − 1) − 8 × (3 − 1)  =  18 − 16 =  2𝑗
𝑖=1   
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Degree of Freedom (Continue) 

 

4)  

 

 

n = 9    ,     j = 11     ,     𝑓𝑖 = 1 

 

𝑀 = 3(𝑛 − 1) − ∑(3 − 𝑓𝑖)

𝑗

𝑖=1

 =  3 × (9 − 1) − 11 × (3 − 1)  =  24 − 22 =  2 
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Number of joints = Number of links connected to a single joint -1 

 

5)  
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n = 12    ,     j = 15     ,     𝑓𝑖 = 1 (for both prismatic and revolute joints) 

 

𝑀 = 3(𝑛 − 1) − ∑ (3 − 𝑓𝑖) =  3 × (12 − 1) − 15 × (3 − 1)  =  33 − 30 =  3𝑗
𝑖=1   

So, in this example, if you know 3 information (such as the angle between two links or the length 

of the links) then you can find all other information about this mechanism! 

6)  
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For this example and similar cases, first, you have to draw the kinematic sketch! 
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n = 4    ,     j = 4     ,     𝑓𝑖 = 1 (for both prismatic and revolute joints) 

 

𝑀 = 3(𝑛 − 1) − ∑ (3 − 𝑓𝑖) =  3 × (4 − 1) − 4 × (3 − 1)  =  9 − 8 =  1𝑗
𝑖=1   

 

 To see the animation for various mechanisms there are many websites. One of the famous 

ones is: https://www.mekanizmalar.com/  

 

7) 

 

 

 
 

https://www.mekanizmalar.com/
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n = 5    ,     j = 6     ,     𝑓𝑖 = 1 (for all joints except joint #2), 𝑓𝑖 = 2 (for joint #2) 

 

𝑀 = 3(𝑛 − 1) − ∑ (3 − 𝑓𝑖) =  3 × (5 − 1) − 5 × (3 − 1) − 1 × (3 − 2) =  12 − 10 − 1 =  1
𝑗
𝑖=1   

 

 

 

 

8)  

 

 

 
 

 

1 

2

2 

3

2 

4

2 

5

2 

6

2 
1 

3 

2 

4 

5 
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n = 8    ,     j = 11     ,     𝑓𝑖 = 1 (for all joints except joint #6 & # 11),   𝑓6 = 𝑓11 = 2  

 

𝑀 = 3(𝑛 − 1) − ∑ (3 − 𝑓𝑖) =  3 × (8 − 1) − 9 × (3 − 1) − 2 × (3 − 2) =  21 − 18 − 2 =  1
𝑗
𝑖=1   
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Remarks: Sometimes the D.O.F. formula doesn’t work! 

 

1) Idle degree of freedom: An internal D.O.F. that does not affect the input/output 

relation of the linkage. For instance, RSSR linkage. From the formula, you will find 

D.O.F. equals 2 while we just need only one actuator to control the mechanism! (the 

second one is internal D.O.F.) 

 

 
2) Over-constrained mechanisms: They have negative mobility! 

 

Example: Find the mobility of a 4-bar linkage in Space. 

 

In general: 

 

n = 4    ,     j = 4     ,     𝑓𝑖 = 1  

 

𝑀 = 6(𝑛 − 1) − ∑ (6 − 𝑓𝑖)
𝑗
𝑖=1  = 6×(4-1)-4×(6-1) = 18-20 = -2     (Over-constrained) 
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If the axes of revolute joints are parallel with each other (like a planar case) 

 

 
 

n = 4    ,     j = 4     ,     𝑓𝑖 = 1  

 

𝑀 = 3(𝑛 − 1) − ∑ (3 − 𝑓𝑖)
𝑗
𝑖=1  = 3×(4-1)-4×(3-1) = 9-8 = 1 

 

 

 Some over-constrained linkages are movable when the axes satisfy certain geometric 

constraints (such as parallel) 

 

 

 

For more examples about link/joint/mobility, you can take a look at Ch.1 of any 

kinematic book.  
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Linkage Analysis 

1. Kinematic sketch 

2. Mobility 

3. Position analysis: Determine the position of any point in the linkage. 

 

 

Steps: 

1. First, we have to define the reference frame. 

2. Define variables and parameters (give the name to them) 

3. Link length: a, b, h, g 

4. Angular/joint variables (measure from the previous link in CCW direction): 

𝜃 (𝑖𝑛𝑝𝑢𝑡 𝑎𝑛𝑔𝑙𝑒), ∅ (𝑐𝑜𝑢𝑝𝑙𝑒𝑟 𝑎𝑛𝑔𝑙𝑒), 𝛹 (𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑛𝑔𝑙𝑒) 

5. Pivots: O, A, B, C 

6. Vector coordinates of points 
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�̅� = {
0
0

}  

�̅� = {
𝑎 𝑐𝑜𝑠𝜃
𝑎 𝑠𝑖𝑛𝜃

}  

𝐶̅ = {
𝑔
0

}  

�̅� = 𝑂𝐴̅̅ ̅̅ + 𝐴𝐵̅̅ ̅̅ = {
𝑎 𝑐𝑜𝑠𝜃
𝑎 𝑠𝑖𝑛𝜃

} + {
ℎ cos (𝜃 + ∅)
ℎ sin (𝜃 + ∅)

}    or  �̅� = 𝑂𝐶̅̅ ̅̅ + 𝐶𝐵̅̅ ̅̅ = {
𝑔
0

} + {
𝑏  cos (𝛹)
𝑏  sin (𝛹)

}   
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What if we want any point on the coupler links? 

 

 
 

�̅� = {
𝑎 cos 𝜃 +
𝑎 sin 𝜃 +

𝑙 cos (𝜃 + ∅ + 𝛼)
𝑙 sin (𝜃 + ∅ + 𝛼)

}     

 

Watch the video for 4-bar linkage and motion of point “p”. 

(https://www.mekanizmalar.com/four-bar-infinity-curve.html) 

 

𝑎, 𝑙, 𝛼 : Fixed parameters (constant values)  

 

𝜃 : Input variable (we control that) 

∅ ∶ Variable which is related to 𝜃 in a nonlinear way and we need to find ∅ (𝜃) 

𝛹 ∶ Variable which is related to 𝜃 in a nonlinear way and we need to find 𝛹 (𝜃) 

 

 How do we know ∅ & 𝛹 are dependent variables? 

 

Because the mobility equals “1” (M=1), that means we just need to control one variable 

for the 4-bar linkage! 

 

Two Ways of Finding Angular Relations: 

 

1) Distance Constraints: The distance between two points in a link is fixed. 

 

𝐴𝐵̅̅ ̅̅ = �̅� − �̅� 

(�̅� − �̅�) ∙ (�̅� − �̅�) =  ℎ2  (Length square) 

 
Dot product (yields a scalar)  

https://www.mekanizmalar.com/four-bar-infinity-curve.html
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({
𝑔 + 𝑏 𝑐𝑜𝑠 𝛹

𝑏 𝑠𝑖𝑛 𝛹
} − {

𝑎 𝑐𝑜𝑠 𝜃
𝑎 𝑠𝑖𝑛 𝜃

}) ∙ ({
𝑔 + 𝑏 𝑐𝑜𝑠 𝛹

𝑏 𝑠𝑖𝑛 𝛹
} − {

𝑎 𝑐𝑜𝑠 𝜃
𝑎 𝑠𝑖𝑛 𝜃

}) = ℎ2 

 

 

(𝑔 + 𝑏 𝑐𝑜𝑠 𝛹 − 𝑎 𝑐𝑜𝑠 𝜃)2 + (𝑏 𝑠𝑖𝑛 𝛹 − 𝑎 𝑠𝑖𝑛 𝜃)2 = ℎ2 

Except for 𝛹, everything else in the above equation is known, so we can find the relation 

between 𝛹 𝑎𝑛𝑑 𝜃 (it is complicated). You can solve it numerically (e.g. Matlab) or with 

computer algebra (e.g. Maple/ Mathematica) or solve it by hand. 

𝑔2 + 𝑏2𝑐𝑜𝑠2𝛹 + 𝑎2𝑐𝑜𝑠2𝜃 + 2𝑔𝑏 𝑐𝑜𝑠𝛹 −  2𝑔𝑎 𝑐𝑜𝑠𝜃 − 2𝑎𝑏 𝑐𝑜𝑠𝛹 𝑐𝑜𝑠𝜃 +  

 𝑏2𝑠𝑖𝑛2𝛹 + 𝑎2𝑠𝑖𝑛2𝜃 − 2𝑎𝑏 𝑠𝑖𝑛𝛹 𝑠𝑖𝑛𝜃 = ℎ2   

After simplification and collection by 𝛹: 

 

(2𝑏(𝑔 − 𝑎 𝑐𝑜𝑠𝜃)) 𝑐𝑜𝑠𝛹 + (−2𝑎𝑏 𝑠𝑖𝑛𝜃) 𝑠𝑖𝑛𝛹 = 2𝑎𝑔 𝑐𝑜𝑠𝜃 + ℎ2 − 𝑔2 − 𝑏2 − 𝑎2 

 

 

𝐴(𝜃) 𝑐𝑜𝑠 𝛹 + 𝐵(𝜃) 𝑠𝑖𝑛 𝛹 = 𝐶(𝜃) 

Divide by √𝐴2(𝜃) + 𝐵2(𝜃): 

𝐴(𝜃)  

√𝐴2(𝜃) + 𝐵2(𝜃)
𝑐𝑜𝑠 𝛹 +

𝐵(𝜃)  

√𝐴2(𝜃) + 𝐵2(𝜃)
 𝑠𝑖𝑛 𝛹 =

𝐶(𝜃)  

√𝐴2(𝜃) + 𝐵2(𝜃)
 

 

�̅� �̅� 

𝑨(𝜽) 𝑩(𝜽) 𝑪(𝜽) 

𝒄𝒐𝒔 𝜹 𝒔𝒊𝒏 𝜹 
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𝑐𝑜𝑠 𝛿  𝑐𝑜𝑠 𝛹 + 𝑠𝑖𝑛 𝛿  𝑠𝑖𝑛 𝛹 =
𝐶(𝜃)  

√𝐴2(𝜃) + 𝐵2(𝜃)
 

 

𝑐𝑜𝑠 (𝛹 − 𝛿) =
𝐶(𝜃)  

√𝐴2(𝜃) + 𝐵2(𝜃)
 

(𝛹 − 𝛿) = ±𝑎𝑟𝑐𝑐𝑜𝑠 (
𝐶(𝜃)  

√𝐴2(𝜃)+𝐵2(𝜃)
)      (arccos has two solutions!)  

 

 

 

 

 

𝑡𝑎𝑛 𝛿 =  

𝐵(𝜃)  

√𝐴2(𝜃) + 𝐵2(𝜃)

𝐴(𝜃)  

√𝐴2(𝜃) + 𝐵2(𝜃)

=
𝐵(𝜃)  

𝐴(𝜃)
 

 

 

𝛿 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐵(𝜃)  

𝐴(𝜃)
) 

 

𝜳 = 𝒂𝒓𝒄𝒕𝒂𝒏 (
𝑩(𝜽)  

𝑨(𝜽)
) ± 𝒂𝒓𝒄𝒄𝒐𝒔 (

𝑪(𝜽)  

√𝑨𝟐(𝜽) + 𝑩𝟐(𝜽)
) 

 

 

Note: For the arctan, use the double-value function or keep track of the signs. 

 

 

 

 

 

 

 

 

 

 

 

𝑎𝑟𝑐𝑡𝑎𝑛 (
+𝐵(𝜃)  

+𝐴(𝜃)
) = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝐵(𝜃)  

𝐴(𝜃)
) 

𝑎𝑟𝑐𝑡𝑎𝑛 (
−𝐵(𝜃)  

−𝐴(𝜃)
) = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝐵(𝜃)  

𝐴(𝜃)
) 
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Or we can write it:   𝛹 =  𝛿 ± 휀          ,       휀 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝐶(𝜃)  

√𝐴2(𝜃)+𝐵2(𝜃)
) 

 

In the above equation, we express 𝜳 as a summation of two angles. What are these 

two angles? There are two solutions for 𝛹 for every value of 𝜃. 

 

            −𝜺: because CW                                      +𝜺: because CCW  

     
 

 

 

 Just in the following case (ε=0), when the coupler link and output link are aligned, 

we will have a single solution. This solution is not desired because in this case 

mechanism will be locked and not move anymore. In kinematic, this situation is 

named singularity. 

 

 
 We have now 𝜳(𝜽) (2 Solutions) 

 We need ∅(𝜽)  

 

 

Solution 1 Solution 2 



ME 3320 Lecture 5 
 

1 
 

Linkage Analysis (Continue) 

 

2) Loop Equations: We can express the vector coordinates of points using different 

paths along the linkage (we can create closed loops) 

 

 
 

�̅� = 𝑂𝐴̅̅ ̅̅ + 𝐴𝐵̅̅ ̅̅  

�̅� = 𝑂𝐶̅̅ ̅̅ + 𝐶𝐵̅̅ ̅̅  

 

Loop: 

 

𝑂𝐴̅̅ ̅̅ + 𝐴𝐵̅̅ ̅̅ + 𝐵𝐶̅̅ ̅̅ + 𝐶𝑂̅̅ ̅̅ = ∅̅ 

 

𝑂𝐴̅̅ ̅̅ + 𝐴𝐵̅̅ ̅̅ = 𝑂𝐶̅̅ ̅̅ + 𝐶𝐵̅̅ ̅̅        Loop Equation 

 

 

{
𝑎 cos 𝜃 + ℎ 𝑐𝑜𝑠 (𝜃 + ∅)
𝑎 sin 𝜃 + ℎ 𝑠𝑖𝑛 (𝜃 + ∅)

} = {
𝑔 + 𝑏 𝑐𝑜𝑠 (𝛹)

𝑏 𝑠𝑖𝑛 (𝛹)
} 

 

We know the 𝛹 from previous calculations and 𝜃 is the input (known). Now, we 

solve for ∅! 

 

Isolate 𝑐𝑜𝑠 (𝜃 + ∅), 𝑠𝑖𝑛 (𝜃 + ∅) in the equation and divide to create 𝑡𝑎𝑛 (𝜃 + ∅): 

 

ℎ 𝑠𝑖𝑛 (𝜃 + ∅)

ℎ 𝑐𝑜𝑠 (𝜃 + ∅)
=

𝑏 𝑠𝑖𝑛 (𝛹) − 𝑎 sin 𝜃

𝑔 + 𝑏 𝑐𝑜𝑠 (𝛹) − 𝑎 cos 𝜃
 

 

Zero Vector 
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 h is the length of the link, so it is always positive. 

 

𝑡𝑎𝑛 (𝜃 + ∅) =
𝑏 𝑠𝑖𝑛 (𝛹) − 𝑎 sin 𝜃

𝑔 + 𝑏 𝑐𝑜𝑠 (𝛹) − 𝑎 cos 𝜃
 

 

∅ = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑏 𝑠𝑖𝑛 (𝛹) − 𝑎 sin 𝜃

𝑔 + 𝑏 𝑐𝑜𝑠 (𝛹) − 𝑎 cos 𝜃
) − 𝜃 

 

 

 Note 1: Double-value arctan in this equation 

 Note 2: Use the same units for arctan and 𝜃 (degrees or radians for both of them) 

 

If we know:  

- Input value 𝜃 

- Links lengths 

- 𝛹(𝜃) and ∅(𝜃) 

We can fully determine the position of any point in the 4-bar linkage. 

 

 

 Independent loops: For most of the planar kinematic chains the independent loops can be 

determined by visual inspection and are arbitrarily selected. Each independent loop must 

contain at least one link or joint that other independent loops do not contain and each link 

and/or joint must appear in at least one of the independent loops. 

 

 However, we can use the following equation to check if we found the correct number of 

independent loops or not! 

 

 

𝐿 = 𝑗 − 𝑛 + 1 
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Example: Find the number of independent loops for the following mechanisms. 

 

 

𝑛 = 6  ,   𝑗 = 7          𝐿 = 𝑗 − 𝑛 + 1 = 7 − 6 + 1 = 2  Independent loops 

 

𝑛 = 8  ,   𝑗 = 10          𝐿 = 𝑗 − 𝑛 + 1 = 10 − 8 + 1 = 3  Independent loops 
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Classification of 4-bar Linkages 

(Based on whether the link fully rotates or rock (back and forth motion))  

Usually, for designing a mechanism, for instance, a 4-bar linkage, we want to know about 

the amount of rotation of each link. That is important for us because usually, we want the 

input link can able to fully rotate (because of attaching motor) while the output link can 

be designed based on the task to do a different range of rotation. 

 

Let’s take a look at the following video and see how a pump jack (4-bar linkage) works. 

https://www.youtube.com/watch?v=Gny3hqxBqCk  

 

Grashof Classification 

 

 For Grashof classification, we need to know the length of the links. 

 s: Smallest link 

 l: Largest link 

 p and q: They are two middle-size links 

 

 

1) One link can fully rotate (Grashof or Grashof-1 linkage) 

 
𝑠 + 𝑙 < 𝑝 + 𝑞 

2) No link can fully rotate (Non-Grashof or Grashof-2 linkage) 

 
𝑠 + 𝑙 > 𝑝 + 𝑞 

3) Foldable linkage  

 
𝑠 + 𝑙 = 𝑝 + 𝑞 

 

 In case #1, the shortest link (s) will fully rotate! 

 

 

Limit Angles 

 

After knowing about one link can fully rotate or not, still we need to know more 

information about the limit angle (how much the other one rocks or can fully rotate).  

 

Graphically: Limits for 𝜃 (input angle) 

 

https://www.youtube.com/watch?v=Gny3hqxBqCk
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            We can use the cos law for the above triangles: 

(ℎ − 𝑏)2 = 𝑎2 + 𝑔2 − 2𝑎𝑔 𝑐𝑜𝑠𝜃𝑚𝑖𝑛 

 

𝑐𝑜𝑠𝜃𝑚𝑖𝑛 =
−(ℎ − 𝑏)2 + 𝑎2 + 𝑔2

2𝑎𝑔
 

 

 

(ℎ + 𝑏)2 = 𝑎2 + 𝑔2 − 2𝑎𝑔 𝑐𝑜𝑠𝜃𝑚𝑎𝑥 

 

𝑐𝑜𝑠𝜃𝑚𝑎𝑥 =
𝑎2 + 𝑔2 − (ℎ + 𝑏)2

2𝑎𝑔
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Linkage Analysis (Continue) 

Limit Angles 

Four different cases based on 𝜽𝒎𝒊𝒏 & 𝜽𝒎𝒂𝒙: 

1) If 𝜃𝑚𝑖𝑛 is a complex number (𝑐𝑜𝑠𝜃𝑚𝑖𝑛 > 1 𝑜𝑟 𝑐𝑜𝑠𝜃𝑚𝑖𝑛 < −1), that means there is 

no 𝜃𝑚𝑖𝑛! (Input link will go through 𝜃 = 0) 

 
2) If 𝜃𝑚𝑎𝑥 is a complex number (𝑐𝑜𝑠𝜃𝑚𝑎𝑥 > 1 𝑜𝑟 𝑐𝑜𝑠𝜃𝑚𝑎𝑥 < −1), that means there is 

no 𝜃𝑚𝑎𝑥! (Input link will go through 𝜃 = 𝜋) 

 

  
3) If you have both 𝜃𝑚𝑖𝑛 & 𝜃𝑚𝑎𝑥 then your input link is not passing zero or 𝜋! (You cannot 

go from positive to the negative range and this type has two assembly modes) 
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4) If you don’t have 𝜃𝑚𝑖𝑛 & 𝜃𝑚𝑎𝑥 then your input link is a crank and it can fully rotate 

(crank). 

 

 

We can do the same classification for 𝛹 (output angle) 

 

In this case, we can use the cos law same as before and just use (𝜋 − 𝛹) for the internal 

angle of triangles.  

Exercise: Drive 𝑐𝑜𝑠(𝛹min ) & 𝑐𝑜𝑠(𝛹𝑚𝑎𝑥) 
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Full classification of a 4-bar linkage 

 

Grashof type 𝜽𝒎𝒊𝒏 𝜽𝒎𝒂𝒙 𝜳𝐦𝐢𝐧  𝜳𝒎𝒂𝒙 Linkage Description 

 

 

(I) 

 

(Two 

assemblies) 

∄ ∄ ∄ ∄ Double 

Crank 

Input & output fully rotate 

∄ ∄ ∃ ∃ Crank-

Rocker 

Input fully rotate 

∃ ∃ ∄ ∄ Rocker- 

Crank 

Output fully rotate 

∃ ∃ ∃ ∃ Double 

Rocker 

None of the input or output 

fully rotate 

 

 

(II) 

 

 

(Only one 

assembly) 

∄ ∃ ∄ ∃ Rocker 

(0)- 

Rocker (0) 

Input & output 

Only pass (0) 

∄ ∃ ∃ ∄ Rocker 

(0)- 

Rocker (π) 

Input pass (0) 

Output pass (π) 

∃ ∄ ∄ ∃ Rocker 

(π)- 

Rocker (0) 

Input pass (π) 

Output pass (0) 

∃ ∄ ∃ ∄ Rocker 

(π)- 

Rocker (π) 

Input & output 

only pass (π) 

 

 ∄: 𝐷𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡  

 There is a software named GIM for linkage analysis, you can download it for free and 

you use it to model the linkages that you design to see how they work. 

Example: Position analysis for the following six-bar linkages 
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A) Mobility 

 

 
 

n = 6    ,     j = 7     ,     𝑓𝑖 = 1 

𝑀 = 3(𝑛 − 1) − ∑ (3 − 𝑓𝑖) =  3 × (6 − 1) − 7 × (3 − 1)  =  15 − 14 =  1𝑗
𝑖=1   

B) Set our reference frame: Because we have 3 pivots on the ground, we won’t be able to align 

them on a line, so we set up the reference frame as a general from one of the pivots.  
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C) Label the mechanism 

 

 
 

 

 

D) Write the coordinate of points 

 

�̅� = {
𝑙1 𝑐𝑜𝑠𝜃
𝑙1 𝑠𝑖𝑛𝜃

}   

 

�̅� = 𝑂𝐴̅̅ ̅̅ + 𝐴𝐷̅̅ ̅̅   𝑜𝑟 𝑂𝐶̅̅ ̅̅ + 𝐶𝐹̅̅̅̅ + 𝐹𝐸̅̅ ̅̅ + 𝐸𝐷̅̅ ̅̅   

 

�̅� = {
𝑔1 + 𝑔2 + 𝑙3 cos(𝛹2) + 𝑙7 cos(𝛹2 + ∅3)

𝑒1 + 𝑒2 + 𝑙3 sin(𝛹2) + 𝑙7 sin(𝛹2 + ∅3)
}   

 

. 

. 

. 

 

E) Find angular relation: because mobility is equal to one, so all angles are a function of 𝜃. 

 

𝛹1(𝜃),   𝛹2(𝜃),   ∅1(𝜃), …. 
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Use loop equations 

1) We have to find identify the loops (independent) 

 

 
 

2) We have 3 loops and only 2 independent loops. We will choose the loops that we have 

information about them. In this case, we don’t know the angle between 𝑙2 & 𝑙6, so it 

would be better to use loop 1 and loop 3 because all angles are labeled for them. 

 

 

Loop 1: 

𝑂𝐴̅̅ ̅̅ + 𝐴𝐵̅̅ ̅̅ = 𝑂𝐶̅̅ ̅̅ + 𝐶𝐵̅̅ ̅̅  

Loop 3: 

𝑂𝐴̅̅ ̅̅ + 𝐴𝐷̅̅ ̅̅ + 𝐷𝐸̅̅ ̅̅ = 𝑂𝐶̅̅ ̅̅ + 𝐶𝐹̅̅̅̅ + 𝐹𝐸̅̅ ̅̅  

You will end up with 2 vector equations which are four equations in total and you have four 

unknowns, so you can find the angles. 

 

Loop 1 

Loop 2 

Loop 3 
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Velocity Analysis 

Velocity: Time derivative of position. 

 

 

 

A̅ = {
𝑎 𝑐𝑜𝑠𝜃
𝑎 𝑠𝑖𝑛𝜃

}  

A̅
.

=
𝑑A̅

𝑑𝑡
=

𝑑A̅

𝑑𝜃
×

𝑑𝜃

𝑑𝑡
= {−𝑎 𝑠𝑖𝑛𝜃 𝜃

.

𝑎 𝑐𝑜𝑠𝜃 𝜃
. }  

 

𝑑𝜃

𝑑𝑡
= 𝜃

.

= 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑙𝑖𝑛𝑘 (𝑔𝑖𝑣𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)  

 

B̅ = {
𝑎 𝑐𝑜𝑠𝜃 + ℎ 𝑐𝑜𝑠(𝜃 + ∅)
𝑎 𝑠𝑖𝑛𝜃 + ℎ 𝑠𝑖𝑛(𝜃 + ∅)

}      or      B̅ = {
𝑔 + 𝑏 𝑐𝑜𝑠𝛹

𝑏 𝑠𝑖𝑛𝛹
}      

B̅
.

= {
−𝑎 𝑠𝑖𝑛𝜃𝜃

.

− ℎ sin(𝜃 + ∅)(𝜃
.

+ ∅
.

)

𝑎 𝑐𝑜𝑠𝜃𝜃
.

+ ℎ cos(𝜃 + ∅)(𝜃
.

+ ∅
.

)
}      or       �̅�

.

= {−𝑏 𝑠𝑖𝑛𝛹𝛹
.

𝑏 𝑐𝑜𝑠𝛹𝛹
. }   

C̅ = {
𝑔
0

}      C̅
.

= {
0
0

} 

What is 𝜃
.

? The angular velocity of the input link. 

Note: points don’t have angular velocity! 

What is ∅
.

? The angular velocity of coupler link with respect to input link. 

Chain rule 
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What is 𝜃
.

+ ∅
.

? The absolute angular velocity of the coupler link with respect to the fixed frame. 

Note: In the planar case because all the axes of rotation are parallel (perpendicular to the plane) 

you can add the angular velocities. 

 

The D.O.F. for 4-bar linkage is 1, in the above equations we just have 𝜃
.

. We don’t know ∅
.

 and  𝛹
.

 

(given by mechanical constraints).  

To compute  ∅
.

, 𝛹
.

 we will take derivatives in the loop equation. 

We only have one loop in a 4-bar linkage: OA+AB=OC+CB 

 

{
𝑎 𝑐𝑜𝑠𝜃 + ℎ 𝑐𝑜𝑠(𝜃 + ∅)
𝑎 𝑠𝑖𝑛𝜃 + ℎ 𝑠𝑖𝑛(𝜃 + ∅)

} = {
𝑔 + 𝑏 𝑐𝑜𝑠𝛹

𝑏 𝑠𝑖𝑛𝛹
}     

     

{
−𝑎 𝑠𝑖𝑛𝜃𝜃

.

− ℎ sin(𝜃 + ∅)(𝜃
.

+ ∅
.

)

𝑎 𝑐𝑜𝑠𝜃𝜃
.

+ ℎ cos(𝜃 + ∅)(𝜃
.

+ ∅
.

)
} = {−𝑏 𝑠𝑖𝑛𝛹𝛹

.

𝑏 𝑐𝑜𝑠𝛹𝛹
. }      Two equations, two unknowns! 

 

Unknowns: 𝛹
.

,  ∅
.

 

Knowns: a, b, h, 𝜃, 𝜃
.

, ∅, 𝛹 

 

2 linear equations in 2 unknowns: Linear system 

[
−ℎ sin(𝜃 + ∅) 𝑏 𝑠𝑖𝑛𝛹
ℎ cos(𝜃 + ∅) −𝑏 𝑐𝑜𝑠𝛹

] { ∅
.

𝛹
. } = {

(𝑎 𝑠𝑖𝑛𝜃 + ℎ sin(𝜃 + ∅)) 𝜃
.

(−𝑎 𝑐𝑜𝑠𝜃 − ℎ 𝑐𝑜𝑠(𝜃 + ∅)) 𝜃
. }  

From linear algebra, there are several methods that you can solve this linear system such as using 

Cramer's rule. 

Note: Example for Cramer's rule: If we have a simple linear system: 

{
𝑎1𝑥 + 𝑏1𝑦 = 𝑐1

𝑎2𝑥 + 𝑏2𝑦 = 𝑐2
  

We can write it in matrix format: 

[
𝑎1 𝑏1

𝑎2 𝑏2
] [

𝑥
𝑦] = [

𝑐1

𝑐2
]  
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Assume a1b2 − b1a2 nonzero. Then, with help of determinants, x and y can be found with 

Cramer's rule as: 

𝑥 =
|
𝑐1 𝑏1
𝑐2 𝑏2

|

|
𝑎1 𝑏1
𝑎2 𝑏2

|
=

𝑐1𝑏2−𝑏1𝑐2

𝑎1𝑏2−𝑏1𝑎2
   ,  𝑦 =

|
𝑎1 𝑐1
𝑎2 𝑐2

|

|
𝑎1 𝑏1
𝑎2 𝑏2

|
=

𝑎1𝑐2−𝑐1𝑎2

𝑎1𝑏2−𝑏1𝑎2
 

After solving these equations, the 𝛹
.

and ∅ 
.

will be found as follow: 

 

 ∅
.

= (
−𝑎 sin (𝛹−𝜃)

ℎ sin (𝛹−𝜃−∅)
− 1) 𝜃

.

                                   𝛹
.

= (
𝑎 sin∅

𝑏 sin (𝜃+∅−𝛹)
) 𝜃

.

 

 

Acceleration Analysis 

 

Point Acceleration: Take second derivatives on point positions. 

 

A̅
.

= {−𝑎 𝑠𝑖𝑛𝜃𝜃
.

𝑎 𝑐𝑜𝑠𝜃𝜃
. }         Ä̅ = {−𝑎 𝑐𝑜𝑠𝜃𝜃

.
2 − 𝑎 𝑠𝑖𝑛𝜃 �̈�

−𝑎 𝑠𝑖𝑛𝜃𝜃
.

2 + 𝑎 𝑐𝑜𝑠𝜃 �̈�
} 

 

�̈�: Input angular acceleration(given)  

 

B̅
.

= {−𝑏 𝑠𝑖𝑛𝛹𝛹
.

𝑏 𝑐𝑜𝑠𝛹𝛹
. }         B̈̅ = {−𝑏 𝑐𝑜𝑠𝛹𝛹

.
2 − 𝑏 𝑠𝑖𝑛𝛹 �̈�

−𝑏 𝑠𝑖𝑛𝛹𝛹
.

2 + 𝑏 𝑐𝑜𝑠𝛹 �̈�
} 

 

𝐶̅
.

= {
0
0

}          C̈̅ = {
0
0

} 

We need to calculate �̈� and ∅̈ as a function of 𝜃, 𝜃
.

, 𝛹, 𝛹
.

,∅,  ∅
.

. So, we have to take second 

derivatives in the loop equation and solve linearly for  �̈� and ∅̈. 

 

https://en.wikipedia.org/wiki/Determinant
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[𝑏𝑖𝑔 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ℎ𝑒𝑟𝑒] {∅̈
�̈�

} = {𝑏𝑖𝑔 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ℎ𝑒𝑟𝑒} 

. 

. 

. 

 

You can solve it in Maple/MATLAB to find �̈� and ∅̈. 

 

 Question: These equations for velocity and acceleration are consistent for all 4-bar 

linkages? 

It depends on the reference frame that you choose. If your reference frame passes through input 

and output pivots, that would be the same for all 4-bar linkage. But if your reference frame for any 

reason does not pass through both of them, then ∅ and 𝛹 would be different (there is another 

parameter “e” in equations) and that will affect other dependent parameters (𝛹
.

, ∅
.

) as well. 
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Position Analysis Slider-Crank Mechanism 

 

 

X-axis: perpendicular to sliding direction  

𝜃 : Input angle 

∅ : Coupler angle 

s: Slide 

(We don’t have output angle in this case) 

 

Watch this video: https://www.youtube.com/watch?v=ZO8QEG4x0wY  

 

Mobility: 

n = 4    ,     j = 4     ,     𝑓𝑖 = 1 (All joints) 

 

𝑀 = 3 × (4 − 1) − 4 × (3 − 1) = 9 − 8 = 1  

 

Variables 

https://www.youtube.com/watch?v=ZO8QEG4x0wY
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Mobility equals one, so we have one input variable (𝜃) and have to define two other variables (s 

and ∅) as a function of 𝜃. 

Find the position vectors for points: 

 

A̅ = {
𝑟 𝑐𝑜𝑠𝜃
𝑟 𝑠𝑖𝑛𝜃

}  

B̅ = {
𝑟 𝑐𝑜𝑠𝜃 + 𝐿 cos(𝜃 + ∅)
𝑟 𝑠𝑖𝑛𝜃 + 𝐿 sin(𝜃 + ∅)

}        or        B̅ = {
𝑒
𝑠

} 

 

There is only one loop. 

Loop equation:     {
𝑟 𝑐𝑜𝑠𝜃 + 𝐿 cos(𝜃 + ∅)
𝑟 𝑠𝑖𝑛𝜃 + 𝐿 sin(𝜃 + ∅)

} = {
𝑒
𝑠

} 

 

Solve for “s” and “∅” using loop equation: 

Step 1: Take 𝑟 𝑐𝑜𝑠𝜃 and 𝑟 𝑠𝑖𝑛𝜃 to the other side of the equation. 

𝐿 cos(𝜃 + ∅) = 𝑒 − 𝑟 𝑐𝑜𝑠𝜃 

𝐿 sin(𝜃 + ∅) = 𝑠 − 𝑟 𝑠𝑖𝑛𝜃 

Step 2: Square both sides of the equations  

(𝐿 cos(𝜃 + ∅))2 = (𝑒 − 𝑟 𝑐𝑜𝑠𝜃)2 

(𝐿 sin(𝜃 + ∅))2 = (𝑠 − 𝑟 𝑠𝑖𝑛𝜃)2 

Step3: Add the equations  

(𝐿 cos(𝜃 + ∅))2 = (𝑒 − 𝑟 𝑐𝑜𝑠𝜃)2 

(𝐿 sin(𝜃 + ∅))2 = (𝑠 − 𝑟 𝑠𝑖𝑛𝜃)2 

𝐿2(cos2(𝜃 + ∅) + sin2(𝜃 + ∅)) = 𝑒2 − 2𝑒𝑟 𝑐𝑜𝑠𝜃 + 𝑟2𝑐𝑜𝑠2𝜃 + 𝑠2 − 2𝑠𝑟 𝑠𝑖𝑛𝜃 + 𝑟2𝑠𝑖𝑛2𝜃 

 

 

 

𝐿2 = 𝑒2 + 𝑟2 − 2𝑒𝑟 𝑐𝑜𝑠𝜃 − 2𝑠𝑟 𝑠𝑖𝑛𝜃 + 𝑠2 

𝑠2 − 2𝑠𝑟 𝑠𝑖𝑛𝜃 + 𝑒2 + 𝑟2 − 𝐿2 − 2𝑒𝑟 𝑐𝑜𝑠𝜃 = 0 

 

+ 

1 

𝑟2 
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This is a quadratic equation in the form of  𝑎𝑠2 + 𝑏𝑠 + 𝑐 = 0 with: 

𝑎 = 1  

𝑏 = −2𝑟 𝑠𝑖𝑛𝜃  

𝑐 = 𝑒2 + 𝑟2 − 𝐿2 − 2𝑒𝑟 𝑐𝑜𝑠𝜃  

 

𝑠 =
−𝑏 ∓ √𝑏2 − 4𝑎𝑐

2𝑎
=

2𝑟 𝑠𝑖𝑛𝜃 ∓ √4𝑟2𝑠𝑖𝑛2𝜃 − 4(𝑒2 + 𝑟2 − 𝐿2 − 2𝑒𝑟 𝑐𝑜𝑠𝜃)

2
 

 

𝑠 = 𝑟 𝑠𝑖𝑛𝜃 ∓ √𝑟2𝑠𝑖𝑛2𝜃 − 𝑒2 − 𝑟2 + 𝐿2 + 2𝑒𝑟 𝑐𝑜𝑠𝜃 

 

 

 

𝑠 = 𝑟 𝑠𝑖𝑛𝜃 ∓ √−(𝑒2 + 𝑟2𝑐𝑜𝑠2𝜃 − 2𝑒𝑟 𝑐𝑜𝑠𝜃) + 𝐿2 

 

 

 

𝑠 = r sin𝜃 ± √𝐿2 − (𝑒 − 𝑟 𝑐𝑜𝑠𝜃)2 

 

Once “s” is known, we can solve for ∅. 

Divide two parts of the loop equation. 

𝐿 sin(𝜃 + ∅) = 𝑠 − 𝑟 𝑠𝑖𝑛𝜃 

𝐿 cos(𝜃 + ∅) = 𝑒 − 𝑟 𝑐𝑜𝑠𝜃 

tan(𝜃 + ∅) =
𝑠 − 𝑟 𝑠𝑖𝑛𝜃

𝑒 − 𝑟 𝑐𝑜𝑠𝜃
 

 

∅ = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑠 − 𝑟 𝑠𝑖𝑛𝜃

𝑒 − 𝑟 𝑐𝑜𝑠𝜃
) − 𝜃 

 

÷ L is the length 

(always positive), so 

we can cancel it. 

−𝑟2𝑐𝑜𝑠2𝜃 

(𝑒 − 𝑟𝑐𝑜𝑠𝜃)2 



ME 3320 Lecture 8 
 

4 
 

Note: use the same unit for 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑠−𝑟 𝑠𝑖𝑛𝜃

𝑒−𝑟 𝑐𝑜𝑠𝜃
) and 𝜃 (radian or degree) 

Note: If you keep tracking sin and cos, then 𝑎𝑟𝑐𝑡𝑎𝑛 will have a single value (you don’t need ±) 

 

 

Note: There are two values for ∅ (one for each “s” value) 

 

Solve for “s” and “∅” using distance constraint 
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 Distance L is fixed 

 

(�̅� − �̅�) ∙ (�̅� − �̅�) =  𝐿2 

 

{
𝑒 − 𝑟 𝑐𝑜𝑠𝜃
𝑠 − 𝑟 𝑠𝑖𝑛𝜃

} ∙ {
𝑒 − 𝑟 𝑐𝑜𝑠𝜃
𝑠 − 𝑟 𝑠𝑖𝑛𝜃

} = 𝐿2 

 

(𝑒 − 𝑟 𝑐𝑜𝑠𝜃)2 + (𝑠 − 𝑟 𝑠𝑖𝑛𝜃)2 = 𝐿2 

 

Rather than a second-degree equation, we find “s” from the following method: 

 

(𝑠 − 𝑟 𝑠𝑖𝑛𝜃)2 = 𝐿2 − (𝑒 − 𝑟 𝑐𝑜𝑠𝜃)2 

 

𝑠 − 𝑟 𝑠𝑖𝑛𝜃 = ±√𝐿2 − (𝑒 − 𝑟 𝑐𝑜𝑠𝜃)2 

 

𝑠 = 𝑟 𝑠𝑖𝑛𝜃 ± √𝐿2 − (𝑒 − 𝑟 𝑐𝑜𝑠𝜃)2 

 

 For the ∅, we can use the loop equation method. 
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Position Analysis Slider-Crank Mechanism 

 

 

 

 

After finding the equation for “s” and “∅”, now we have to find the limits of this mechanism. In 

this part, we have to find the sliding range  “s” and check if we have a limit angle for θ or if it can 

able to fully rotate. 

𝑠 = 𝑟 𝑠𝑖𝑛𝜃 ± √𝐿2 − (𝑒 − 𝑟 𝑐𝑜𝑠𝜃)2 

Limits on “θ” 

 If from the above equation we find “s” is a complex number and that means it is beyond 

the maximum value (impossible). 

 “s” would be real if 𝐿2 − (𝑒 − 𝑟 𝑐𝑜𝑠𝜃)2 ≥ 0 

 So, 𝐿2 − (𝑒 − 𝑟 𝑐𝑜𝑠𝜃)2 = 0 will give us the limit angle for 𝜃. 

√(𝑒 − 𝑟 𝑐𝑜𝑠𝜃)2 = ±√𝐿2 

𝑟 𝑐𝑜𝑠𝜃 = 𝑒 ± 𝐿                    𝑐𝑜𝑠𝜃 =
𝑒±𝐿

𝑟
 



ME 3320 Lecture 9 
 

2 
 

𝜃𝑚𝑖𝑛 = ±𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑒 + 𝐿

𝑟
) 

𝜃𝑚𝑎𝑥 = ±𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑒 − 𝐿

𝑟
) 

 

 

 

 Is it possible that |𝑒 ± 𝐿| > 𝑟 (that causes 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑒+𝐿

𝑟
) > 1 or 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑒−𝐿

𝑟
) < −1)? If 

yes, what is the meaning of it? 

 In the kinematic language, crank means fully rotate. In most cases, the slider-crank is made 

to fully rotate.  So, in many cases 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 become complex and that means you 

don’t have a limit angle and the input link can fully rotate (crank).   

 

 

 

 

 

 

 

Limit Angles 
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Limits on “s” 

 

 

 

 

 

 

 

 

 

Slider-Crank Inversions  

Inversions (in mechanisms): switch the ground link. 

 

 

 

Some videos: 

https://www.youtube.com/watch?v=7PYnsvVcCts   

https://www.youtube.com/watch?v=B74fMbf5nek  

 

 

 

  𝑠𝑚𝑎𝑥 = ±√(𝑟 + 𝐿)2 − 𝑒2   

 

 

    𝑠𝑚𝑖𝑛 = ±√(𝐿 − 𝑟)2 − 𝑒2   

 

Ground: Link-2 

Ground: Link-4 Ground: Link-3 

Ground: Link-1 

https://www.youtube.com/watch?v=7PYnsvVcCts
https://www.youtube.com/watch?v=B74fMbf5nek
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How to analyze other inversions? 

 

 

 

�̅� = {
𝑠 𝑐𝑜𝑠𝜃
𝑠 𝑠𝑖𝑛𝜃

}                   or               �̅� = {
𝑟 + 𝐿 𝑐𝑜𝑠𝛹

𝐿 𝑠𝑖𝑛𝛹
}  

 

 In this case: 𝑒 = 0 
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Velocity Analysis 

 

 
 

Take derivatives: 

�̅� = {
𝑟 𝑐𝑜𝑠𝜃
𝑟 𝑠𝑖𝑛𝜃

}       ,           A̅
.

= {−𝑟 𝑠𝑖𝑛𝜃 𝜃
.

𝑟 𝑐𝑜𝑠𝜃 𝜃
. }  

B̅ = {
𝑟 𝑐𝑜𝑠𝜃 + 𝐿 𝑐𝑜𝑠(𝜃 + ∅)
𝑟 𝑠𝑖𝑛𝜃 + 𝐿 𝑠𝑖𝑛(𝜃 + ∅)

}     ,      B̅
.

= {
−𝑟 𝑠𝑖𝑛𝜃 𝜃

.

− 𝐿 sin(𝜃 + ∅)(𝜃
.

+ ∅
.

)

𝑟 𝑐𝑜𝑠𝜃 𝜃
.

+ 𝐿 cos(𝜃 + ∅)(𝜃
.

+ ∅
.

)
}      

B̅ = {
𝑒
𝑠

}    ,     B̅
.

= {
0
𝑠
. } 

We have to find 𝑠
.
(𝜃, 𝜃

.

) and ∅
.

(𝜃, 𝜃
.

). For that, we can take the derivate of the loop equation (B̅
.

) 

and solve for them. 

Linear equations using (B̅
.

): 

{
−𝑟 𝑠𝑖𝑛𝜃 𝜃

.

− 𝐿 sin(𝜃 + ∅)(𝜃
.

+ ∅
.

)

𝑟 𝑐𝑜𝑠𝜃 𝜃
.

+ 𝐿 cos(𝜃 + ∅)(𝜃
.

+ ∅
.

)
} = {

0
𝑠
. } 

 

𝑠
.

=
𝑟 𝑠𝑖𝑛∅ 

sin(𝜃+∅)
 𝜃

.

   or   𝑠
.

=
𝑟 (𝑠 𝑐𝑜𝑠𝜃−𝑒 𝑠𝑖𝑛𝜃) 

𝑠−𝑟 sin 𝜃
 𝜃

.

 

∅
.

=
−𝑟 𝑠𝑖𝑛𝜃 − 𝐿  sin(𝜃 + ∅) 

𝐿 sin(𝜃 + ∅)
 

 

Acceleration Analysis: Take second derivatives and you can find �̈� and ∅̈. 

Simplify 𝑠
.
 to not 

be a function of ∅ 
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Theoretical Kinematics 

Position 

 

 

{𝑀}: Moving Frame 

{𝐹}: Fixed Frame 

�̅�: Coordinate point P in the Moving frame 

�̅�: Coordinate point P in the Fixed frame (it is the function of time and if the body is moving this 

coordinate would be changed) 

 

To compute �̅�: Keep track of using {𝑀}and position vector �̅� and angle 𝜃 

 

�̅� = �̅� + �̅�        (But first, we need to express �̅� in fixed frame) 
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{
𝑝𝑥 cos 𝜃 − 𝑝𝑦 𝑠𝑖𝑛𝜃

𝑝𝑥 𝑠𝑖𝑛𝜃 + 𝑝𝑦 𝑐𝑜𝑠𝜃
} 

�̅� = {
𝑑𝑥

𝑑𝑦 
} + {

𝑝𝑥 cos 𝜃 − 𝑝𝑦 𝑠𝑖𝑛𝜃

𝑝𝑥 𝑠𝑖𝑛𝜃 + 𝑝𝑦 𝑐𝑜𝑠𝜃
} 

�̅� = {
𝑑𝑥

𝑑𝑦 
} + [

cos 𝜃 − 𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] {
𝑝𝑥

𝑝𝑦 }  

 

 

 

 

 Rotation Matrices are orthogonal, the determinant of them equals +1, it is invertible, and 

the inverse is transposed ([𝑅]−1 = [𝑅]𝑇), etc. 

 𝑅(𝜃)= [
cos 𝜃 − 𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] 

 This rotation matrix can be used to solve any problem. Just we have to make sure to 

measure the angle (𝜃) CCW. 

So, right now we can compute the �̅� in the Fixed frame: 

�̅� = �̅� + 𝑅(𝜃) �̅� 

 

Position vector in 

the moving 

frame 

Position vector in 

the fixed frame 

Rotation Matrix  

𝑅(𝜃) 
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This expression can have two meanings:  

 

1. The changing of coordinate from moving frame to fixed frame. 

2. Position of point “P” after displacing the body by �̅� and 𝜃. 

 

 

 The displacement will be given by the position vector of origin (�̅�) and rotation angle of 

the moving frame with respect to the fixed frame (𝜃) 

�̅�: Coordinate point p before the motion 

�̅�: Coordinate point p after motion given by �̅� and 𝜃. 

Example: The following triangle after a rigid motion is reached a new position. Point “q” in this 

triangle has the vector of �̅� = {
5
0

} which is measured in the moving frame attached to the triangle. 

Find the �̅� (vector of point “q” with respect to the fixed frame) after this motion. 

 

Before After 
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From the graph, �̅� = {
10
2

} and the rotation angle is 𝜃 =
𝜋

2
. So, the rotation matrix would 

be: 

𝑅(𝜃)= [
cos 𝜃 − 𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] = [
cos(

𝜋

2
) − sin (

𝜋

2
)

sin (
𝜋

2
) cos (

𝜋

2
)

] = [
0 − 1
1 0

] 

 

From the following equation, we can find the �̅�.  

�̅� = �̅� + 𝑅(𝜃)�̅� = {
10
2

} + [
0 − 1
1 0

] {
5
0

} = {
10
2

} + {
0
5

} = {
10
7

} 

 

Velocity 

 

�̅� = �̅� + 𝑅(𝜃)�̅�  

 

�̇̅� =
𝑑�̅�

𝑑𝑡
=

𝑑

𝑑𝑡
(�̅� + [𝑅]�̅�) = �̇̅� + [�̇�]�̅�  

 

�̅�: It is the origin of the moving frame with respect to the fixed frame. So, it is changing 

with time. 

�̅�: It is attached to the moving frame. So, it’s not changing with time. 

[𝑅]: It is the combination of 𝑠𝑖𝑛 𝜃 and 𝑐𝑜𝑠 𝜃, and 𝜃 is changing with time. So, [𝑅] will 

change with time. 

 

Everything in the above equation is expressed in the fixed frame except �̅�. So, let’s express 

�̅� in fixed frame: 

 

�̅� = �̅� + 𝑅(𝜃)�̅�  

 

�̅� − �̅� = [𝑅]�̅�           [𝑅]−1(�̅� − �̅�) = �̅�          [𝑅]𝑇(�̅� − �̅�) = �̅� 

 

So, we can write the velocity equation in this form: 

 

�̇̅� = �̇̅� + [�̇�][𝑅]𝑇(�̅� − �̅�) 
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[�̇�][𝑅]𝑇 = �̇� [
−𝑠𝑖𝑛𝜃  −cos𝜃

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
] [

cos 𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] =

�̇� [−𝑠𝑖𝑛𝜃 cos 𝜃 +  cos 𝜃 𝑠𝑖𝑛𝜃  −𝑠𝑖𝑛2𝜃 − cos2𝜃
cos2𝜃 + 𝑠𝑖𝑛2𝜃 cos 𝜃 𝑠𝑖𝑛𝜃 − 𝑠𝑖𝑛𝜃 cos 𝜃 

]  

 

[�̇�][𝑅]𝑇 = �̇� [
0 −1
1 0

]   Skew symmetric matrix 

 

 

 We can find Skew symmetric matrix for higher dimensions (3, 4, etc.). If we are in 3-

dimensions this matrix is equivalent and acts as the cross product. (but remember the cross 

product is not defined in 2 dimensions, so we don’t have a cross product in the planar case) 

For our case (2-D), we can say we are in 3-D with Z=0  

�̇̅� = �̇̅� + �̅� × (�̅� − �̅�) = {
�̇�𝑥

�̇�𝑦

0

} + {
0
0
�̇�

} × {
𝑄𝑥 − 𝑑𝑥

𝑄𝑦 − 𝑑𝑦

0

} 

 

�̅� = �̇� {
0
0
1

} = {
0
0
�̇�

} 
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Instant center of velocity (instant center of rotation): There is always one point in a 

moving body that has zero velocity instantaneously (just for a second). The body 

instantaneously rotates about this point. 

 

 We have an Instant center of velocity for the rigid bodies Not points!  

 

 

In the following 4-bar linkage: 

 

 
 

What is the Instant center of velocity for the input link? (What point has zero velocity?) 

 

 
 

What is the Instant center of velocity for the output link? 

 



ME 3320 Lecture 10 
 

7 
 

 
What is the Instant center of velocity for the coupler link? 

 

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tangent line 
Tangent line 
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Pole: Point of rotation for a finite motion. For having a motion from frame {𝑀1} to {𝑀2}, 

there is a point name “Pole” which the point can rotate about it with “minimal motion”. 

 

How to find the Pole? 

We are trying to find the center of the circle that the frame is moving around it: 

Step1: Select the same point on two positions of the moving frame {𝑀1} & {𝑀2} 

 

 
 

Q1: What is the minimum distance between two points? Straight line 

 

 

Step2: Connect the points with a straight line. 

 

 
 

Q2: How many circles can pass through two points? Infinity 
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Step3: Find the mid-point on the line between two points and sketch a perpendicular line 

that passes this mid-point. The center of the circle definitely would be on this line. 

 

 
Step4: For finding the exact location of the “Pole” we need to repeat this process with two 

other points on two positions of the moving frame {𝑀1} & {𝑀2} 

 

 
Step5: The location of the perpendicular lines reaching each other would be the “Pole”! 
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Synthesis of Linkages 

Design problem: The designer is given a task (A motion task) and is asked to design a mechanism 

to do the task. 

1) Task Definition: Task can be defined in different forms 

 A curve in the plane (for instance paint on a particular trajectory) (We will not cover in this 

class) 

 

 

 

 

 

 

 An area of the plane (workspace) (We will not cover in this class) 

 

 

 

 

 

 

 

 A set of finite positions (it will cover in this class) 

 

 

 

 A set of input/output angle (For instance the motion of windshield wiper or design mechanism 

input fully rotate when the output racks between two particular positions) (it will cover in this 

class) 

 

2) Type Synthesis: Select the most proper type of mechanism for doing the task. 

There is not any theory to answer this part yet. In this course, we just have to focus on the 

4-bar linkages. 

3) Dimensional synthesis: Calculate link lengths and position of fixed pivots for doing the 

task. 

4) Analyze the results: Check limit angles, velocities, accelerations, size of mechanism, 

required force is not too high, etc. If the design is not good enough, repeat the steps and 

find a better design (solution). 
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Graphical Synthesis in the Plane for Rigid-Body Guidance 

In this method, we always have a fixed frame and a rigid body that is moving to several different 

positions with respect to the fixed frame. We want to design the proper linkage that can able to do 

these tasks and guide the rigid body to these positions. 

We are going to design a 4-bar linkage while the rigid body is attached to the coupler linkage. In 

other words, the coupler link can go through all task positions. 

Why attached to the coupler linkage? Because we know the input and output linkage fully rotate 

so they cannot make a general motion and they have just rotation. 

Two Position Graphical Synthesis: 

In this case, we have extra freedom and that means there are infinite possible solutions and many 

mechanisms that can be designed that are able to go through these two positions. So, in the first 

step, we have to select the moving pivot of the input link (𝐴𝑖) (the joint that is not fixed).  

 

We know pivot “A” rotates about the fixed pivot “O”. As we discussed before, there are infinite 

circles that can pass through two points but the center of all of them would be on the line that is 

perpendicular to the line between these two points and passing through the midpoint. So, sketch 

the perpendicular bisector for points 𝐴1 and 𝐴2 and select any proper point on the line for locating 

pivot “O” based on other design preferences. 
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Repeat the process by selecting a proper point for the pivot “𝐵𝑖”. You can select any point inside 

or outside of the object. Just make sure the points for 𝐵1 and 𝐵2 having the same relation to frames 

{𝑀1} and {𝑀2} respectively. Then, with repeating what we did for finding the location of pivot 

“O” to find the location of pivot “C”. This is the last step and with connecting pivots, the 4-bar 

linkage would be complete. 

 

 

Three Position Graphical Synthesis: 

We still have extra freedom but less than two positions. Do the following steps: 

 

y 
x 
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1) Select the moving pivot on the input link (𝐴𝑖) 

2) In this case, we have three points, so there is only one circle passing through these three 

points. The center of this circle (which is the position of pivot “O”) would be the 

intersection of two perpendicular bisectors. 

 

 
 

 

3) Select the moving pivot on the output link (𝐵𝑖) 
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4) Repeat step 2 to find the location of pivot “C” 

5) Connect all pivots and complete the 4-bar linkage! 

 

Note: If pivots “O” and “C” coincide or are very close to each other or for any reason you dislike 

their location, you can change the position of moving pivots (𝐴𝑖 & 𝐵𝑖) and repeat the design steps 

and you will find completely different points for pivots “O” and “C”!  

Note: We can define four positions but then we won’t able to select the moving pivot and graphical 

calculation become more complex. 

Note: For three positions, we can select the fixed pivot instead of the moving pivot. In that case, 

the process and step would be different and we need to find the pole, draw more lines and angles, 

etc. If you are interested, you can find the steps and explanation in either Norton or Waldron's 

books.   
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Algebraic Synthesis in the Plane for Rigid-Body Guidance (Exact 

Synthesis of 4-Bar Linkage) 

 

 Exact Synthesis: We have to pass exactly through those positions. 

 

In this method, the reference frame and a set of positions are given and we have to calculate and 

find the position of the joints (O, C, 𝐴1, 𝐵1). The shape of the links in the kinematic is not mattered.  

 

 
 

The moving pivots of the 4-bar linkage have a relation with the moving frame (we don’t know 

what exactly this relation is). So, when the moving frame moves to a new position the moving 

pivots will move too. The moving frame move from position 1 to i. 

Let’s solve it for a random 4-bar linkage in the plane and find the location of pivots. In this case, 

the design parameters (unknowns) are O, C, 𝐴𝑖, 𝐵𝑖, a, b, h, etc. We just know the moving pivot 

rotates about the fixed pivot with the radius a! 

 

For the input link, we can write the distance constraint equation for a general position of pivot A 

(�̅�𝑖). 

 

�̅�1, [𝑅(𝜃1)] 

�̅�2, [𝑅(𝜃2)] 
. 

. 

. 

 

�̅�𝑖, [𝑅(𝜃𝑖)] 
 

[𝑅(𝜃𝑖)] = [
cos 𝜃𝑖  − 𝑠𝑖𝑛𝜃𝑖

𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖
]   
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(�̅�𝑖 − �̅�) ∙ (�̅�𝑖 − �̅�) =  𝑎2   

 

The dot product is distributive and commutative, so: 

 

�̅�𝑖 . �̅�𝑖 + �̅�. �̅� − 2�̅�𝑖 . �̅� = 𝑎2  

 

Now, for eliminating one of the unknown (“a”) from the above equation, we write a similar 

equation for the first position of moving pivot A (�̅�1) and subtract the above equation from it. 

 

�̅�𝑖. �̅�𝑖 + �̅�. �̅� − 2�̅�𝑖 . �̅� = 𝑎2 

�̅�1. �̅�1 + �̅�. �̅� − 2�̅�1. �̅� = 𝑎2 

 

�̅�𝑖 . �̅�𝑖 − �̅�1. �̅�1 − 2(�̅�𝑖 − �̅�1). �̅� = 0 

 

In the above equation: 

�̅�𝑖: It is a general position and it can be �̅�2, �̅�3, … , �̅�𝑛 

 

So, if we have n positions for the moving frame, we are able to create (n-1) perpendicular bisector 

lines.  

 

 

 

 

 

 

̶ 

The equation of the perpendicular 

bisector of �̅�1 & �̅�𝑖  

You have to memorize 

this equation! 
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Two Position Algebraic Synthesis: 

 

 
 

In this problem �̅�1, 𝜃1, �̅�2, 𝜃2 are given. 

 

How many design equations do we have for this case? We have two positions and only one design 

equation. 

 

�̅�2. �̅�2 − �̅�1. �̅�1 − 2(�̅�2 − �̅�1). �̅� = 0 

 

How many unknowns do we have in this design equation? 

Three vectors �̅�1, �̅�2, �̅� seems all are unknown but vectors �̅�1 & �̅�2 are dependent on each other. 

But vector �̅� is fixed in the moving frame. So, we can express it in the moving frame.  
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�̅�1 = �̅�1 + [𝑅(𝜃1)]�̅� 

�̅�2 = �̅�2 + [𝑅(𝜃2)]�̅� 

 

 

So, we have four unknowns (two unknowns per vector) and one equation. 

 

 �̅� = {
𝑂𝑥

𝑂𝑦
} (In fixed frame) ,  �̅� = {

𝑎𝑥

𝑎𝑦
} (In moving frame) 

�̅�2. �̅�2 − �̅�1. �̅�1 − 2(�̅�2 − �̅�1). �̅� = 0  

 

(There is a linear relation between �̅�1, �̅�2, and �̅�) 

 

What we can do with four unknowns and only one equation? We can give value to 3 unknowns 

and solve for the remaining one. 

 

Compare to graphical synthesis (which was easier to choose the moving pivot and find the fixed 

pivot), because we have an equation now, we have more flexibility to choose any parameters of 

the moving pivot or fixed pivot and find the remaining unknown (doesn’t matter which value you 

choose). 

 

Then, you have to repeat the process for the output link to find the position of the pivots �̅� and 𝐶̅. 
 

 

 

 

 

 

 

 

 

In these two equations, we know 

�̅�1, �̅�2, 𝜃1, 𝜃2, so there is only 

one unknown �̅� 
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Synthesis of Linkages (Continue) 

Example: Design a proper 4-bar linkage for the following two-position task.  

 

 
 

 

Step 1: Select (define) the moving frame where ever you want and find the following information 

based on that: 

 

{𝑀1} 
{𝑀2} 

𝑑1
̅̅ ̅ 

𝑑2
̅̅ ̅ 

{𝑀1} 

{𝑀2} 
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Step 2: Write all position vectors (�̅�𝑖) and all rotation matrices ([𝑅(𝜃𝑖)]), for 𝑖 = 1,2, … , 𝑛 (n 

positions). In this case, we have two positions.  

 

�̅�1 = {
7
2
} 

 

[𝑅(𝜃1)] = [
1 0
0 1

]     (𝜃1 = 0°) 

 

�̅�2 = {
10
5

} 

 

[𝑅(𝜃2)] = [
cos(315°) −sin(315°)
sin(315°) cos(315°)

] = [

1

√2

1

√2

−
1

√2

1

√2

]     (𝜃2 = 315°) 

Step 3: Write design equations. In this case, we have only one equation. 

 

 

�̅�2. �̅�2 − �̅�1. �̅�1 − 2(�̅�2 − �̅�1). �̅� = 0 

Where 

 

�̅�1 = �̅�1 + [𝑅(𝜃1)]�̅� = {
7
2
} + [

1 0
0 1

] {
𝑎𝑥

𝑎𝑦
} = {

7 + 𝑎𝑥

2 + 𝑎𝑦
} 

�̅�2 = �̅�2 + [𝑅(𝜃2)]�̅� = {
10
5

} +

[
 
 
 

1

√2

1

√2

−
1

√2

1

√2]
 
 
 

{
𝑎𝑥

𝑎𝑦
} = {

10 +
𝑎𝑥

√2
+

𝑎𝑦

√2

5 −
𝑎𝑥

√2
+

𝑎𝑦

√2

} 

 

We have one equation and four unknowns (𝑎𝑥, 𝑎𝑦, 𝑂𝑥, 𝑂𝑦). So, as a designer, we have to decide 

to give the value to three of these unknowns and solve the equation to find the last parameter. 

Based on the equation, that would be easier to give a number to the moving pivot and one of the 

parameters of the fixed pivot (The equation is linear in “𝑂” and quadratic in “𝑎”). 

 

Step 4: Select three parameters and solve for one. 

 

For instance, let’s select the value for 𝑎𝑥, 𝑎𝑦, and 𝑂𝑦 and solve for 𝑂𝑥 

 

�̅� = {
𝑂𝑥

𝑂𝑦
} = {

𝑂𝑥

5
} 

 

�̅� = {
0
2
}               �̅�1 = {

7
4
}    ,     �̅�2 = {

11.4
6.4

}                                  
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�̅�1. �̅�1 = 65      ,       �̅�2. �̅�2 = 171.4 

 

Design equation: 

 

171.4 − 65 − 2 × (11.4 − 7) × 𝑂𝑥 − 2 × (6.4 − 4) × 5 = 0 

 

𝑂𝑥 = 9.37 

 

So, we have the position of two pivots: 

𝐴 (�̅�1 = {
7
4
}) (attached to the moving object) and 𝑂 = {

9.37
5

} (attached to the ground). 

 
To complete the four-bar linkage, we need to repeat the process. We have to select a different 

moving pivot “�̅�” and select 𝐶𝑥 or 𝐶𝑦 (𝐶 is another fix pivot) and solve the design equation again.  

 

For instance:  

 

𝐶̅ = {
𝐶𝑥

𝐶𝑦
} = {

11
𝐶𝑦

}        and       �̅� = {
2
0
}                 and solve for  𝐶𝑦 
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Note: The benefit of using 4 bar linkage rather than a two links robot for making this motion:  

1) the mechanism is stronger 2) you need only one actuator to move the object.  
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Algebraic 3-Position Synthesis 

 

 
 

In this case, we have three positions and it means two design equations. 

 

Eq1:                                         �̅�2. �̅�2 − �̅�1. �̅�1 − 2(�̅�2 − �̅�1). �̅� = 0 

 

Eq2:                                         �̅�3. �̅�3 − �̅�1. �̅�1 − 2(�̅�3 − �̅�1). �̅� = 0 

 

Where                                      �̅�𝑖 = �̅�𝑖 + [𝑅(𝜃𝑖)]�̅� 

 

We have four unknowns (always four unknowns: two for moving pivots and two for the fixed 

pivots), and we can select two of these four parameters and solve for the other two. 

 

It would be easier to select the number for parameters of moving pivot and solve for fix pivot. 

 

 

 

 



ME 3320 Lecture 12 
 

6 
 

Example:  

 

 
 

�̅�1 = {
2
1
}   ,     [𝑅(𝜃1)] = [

1 0
0 1

]     (𝜃1 = 0°)  

 

�̅�2 = {
4
3
} ,    [𝑅(𝜃2)] = [

cos(45°) −sin(45°)
sin(45°) cos(45°)

] = [

1

√2
−

1

√2
1

√2

1

√2

]     (𝜃2 = 45°) 

�̅�3 = {
1
2
} ,    [𝑅(𝜃3)] = [

cos(90°) −sin(90°)
sin(90°) cos(90°)

] = [
0 −1
1 0

]     (𝜃2 = 90°) 

 

 

Do we know if the mechanism is going through these positions in the order it is presented 

(pos-1 to pos-2 to pos-3)? There is nothing in the equation that says that! Based on the equations 

we only know the 4-bar linkage will pass through all of these positions. So, after design if find the 

4-bar linkage is not passing through the desired order we have to pick other values and solve 

equations again. (There are other methods but with using equations the only way is trial and error) 

 

 

Step 1: Let’s pick �̅� = {
0
0
} and solve for �̅� = {

𝑂𝑥

𝑂𝑦
}         

 

�̅�1 = {
2
1
}    ,     �̅�2 = {

4
3
}   ,    �̅�3 = {

1
2
}   
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Write two design equations: 

 

Eq1:                                         �̅�2. �̅�2 − �̅�1. �̅�1 − 2(�̅�2 − �̅�1). �̅� = 25 − 5 − 2(2 𝑂𝑥 + 2 𝑂𝑦) = 0 

 

Eq2:                                         �̅�3. �̅�3 − �̅�1. �̅�1 − 2(�̅�3 − �̅�1). �̅� = 5 − 5 − 2(−𝑂𝑥 +  𝑂𝑦) = 0 

 

 

 

 

 

 
 

Repeat the process for the output link: Let’s pick �̅� = {
1
0
} and solve for 𝐶̅ = {

𝐶𝑥

𝐶𝑦
}     

Just we will change the name of the �̅�1 , �̅�2, �̅�3 to �̅�1, �̅�2, �̅�3 on the equations. 

 

�̅�1 = {
3
1
}    ,     �̅�2 = {

4.7
3.7

}   ,    �̅�3 = {
1
3
}   

 

Eq1:                          �̅�2. �̅�2 − �̅�1. �̅�1 − 2(�̅�2 − �̅�1). 𝐶̅ = 35.78 − 10 − 2(1.7 𝐶𝑥 + 2.7 𝐶𝑦) = 0 

 

Eq2:                         �̅�3. �̅�3 − �̅�1. �̅�1 − 2(�̅�3 − �̅�1). 𝐶̅ = 10 − 10 − 2(−2𝐶𝑥 +  2𝐶𝑦) = 0 

 

 

 

 

{
𝑂𝑥 = 2.5
𝑂𝑦 = 2.5

 

 

{
𝐶𝑥 = 2.93
𝐶𝑦 = 2.93 
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Algebraic 4-Position Synthesis 

 

Define (�̅�𝑖) & ([𝑅(𝜃𝑖)])   for 𝑖 = 1,2,3,4  

 

That means we can define 3 design equations: 

 

�̅�𝑖 . �̅�𝑖 − �̅�1. �̅�1 − 2(�̅�𝑖 − �̅�1). �̅� = 0             𝑖 = 2,3,4 

 

 

Select One parameter among (𝑎𝑥, 𝑎𝑦, 𝑂𝑥, 𝑂𝑦) and solve for the other three. Three quadratic 

equations and we need some software (MATLAB, Maple, etc.) to solve it. Also, you will have 

more than one solution (three quadratic equations, you will find up to 2 × 2 × 2 = 8 solutions (it 

can be less)). Multiple solutions are good for us because we will have more designs to select. 

 

Note: We have three unknown parameters of �̅� = {
𝑂𝑥

𝑂𝑦
} & �̅� = {

𝑎𝑥

𝑎𝑦
}, so basically, we don’t know 

the location of any of these points completely, and that is the reason we can’t solve the problem 

for more than 3 positions graphically (bisector lines) and only we can solve it algebraically! 
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Algebraic 5-Position Synthesis 

 

Define (�̅�𝑖) & ([𝑅(𝜃𝑖)])   for 𝑖 = 1,2,3,4,5  

 

That means we can define 4 design equations: 

 

�̅�𝑖 . �̅�𝑖 − �̅�1. �̅�1 − 2(�̅�𝑖 − �̅�1). �̅� = 0             𝑖 = 2,3,4,5 

 

We have 4 unknowns and that means, we can’t select any of the parameters (𝑎𝑥, 𝑎𝑦, 𝑂𝑥, 𝑂𝑦) and 

no free choice. Four quadratic equations and we need some software (MATLAB, Maple, etc.) to 

solve them. Also, you will have more than one solution (four quadratic equations, you will find up 

to 2 × 2 × 2 × 2 = 16 solutions (in reality it only has up to 6 because of structure and it is not a 

completely general second-degree equation (the proof is beyond this course) and maybe some of 

these solutions are complex). In this case, you don’t have that much flexibility, and based on the 

selected positions you have to pick from the solutions and if you want to change the design you 

have to modify the input positions (these are nonlinear equations, so a little change in input 

positions may a big change in the final design). 

 

Note: Five arbitrary positions is the maximum limit number of positions for a 4-bar linkage! 

Note: If you need to reach more positions, you can use 6 bar linkages, 8 bar linkages, etc. 

 

 

Comments: After the design become complete maybe some of the requirements are not what 

you expect and you have to redesign the mechanism. Such as: 

 

 Ordering of positions not specified.  

 It may be you are passing singularity between two positions. 

 It may be the mechanism can reach some of the positions in one assembly and some 

others in different assembly and you have to open and reassemble the mechanism (the 

position belong to different branches of the motion). 

 Velocity and acceleration may not be the desired ones (you can add the velocity and 

acceleration equations to the design equations of the system).  

 

 

 

 

 

 

 



ME 3320 Lecture 13 
 

1 
 

 

Other Synthesis Method: Vector or Loop Equations 

Just imagine that we have two positions as it is shown in the following figure. 

 

We don’t know where the 4-bar linkage is, so we just sketch a random 4-bar linkage. However, 

we know the coupler link has to be connected to the moving frame.   
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Input data: �̅�1, 𝛽1, �̅�2, 𝛽2 

Unknown information about this 4-bar linkage: 1) We don’t the location of pivot “𝑂” 2) We don’t 

know the location of pivot “𝐶” 3) We don’t know the link length “𝑎” 4) We don’t know the link 

length “ℎ” 5) We don’t know the link length “𝑏” 6) We don’t know the length of “𝑙” 7) We don’t 

know the angle of “𝛼” 8) We don’t know the angles “𝜃1, ∅1, 𝛹1” for the first position  9) We don’t 

know the angles “𝜃2, ∅2, 𝛹2” for the second position 10) We don’t know the angle “𝜆”  

 

Position equation I: 

 

b 
h 
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Input: �̅�1, 𝛽1 (are given) 

The rest of the parameters are unknown  

Eq 1: Vector equation to point 𝐷1  

 

{
𝑂𝑥

𝑂𝑦
} + {

𝑎 𝑐𝑜𝑠 𝜃1

𝑎 𝑠𝑖𝑛 𝜃1
} + {

𝑙 𝑐𝑜𝑠 (𝜃1 + ∅1 + 𝛼)
𝑙 𝑠𝑖𝑛 (𝜃1 + ∅1 + 𝛼)

} = {
𝑑1𝑥

𝑑1𝑦
} 

 

Eq 2: This is a close mechanism so the standard loop equation for this mechanism has to be true. 

 

{
𝑂𝑥

𝑂𝑦
} + {

𝑎 𝑐𝑜𝑠 𝜃1

𝑎 𝑠𝑖𝑛 𝜃1
} + {

ℎ 𝑐𝑜𝑠 (𝜃1 + ∅1)
ℎ 𝑠𝑖𝑛 (𝜃1 + ∅1)

} = {
𝐶𝑥

𝐶𝑦
} + {

𝑏 𝑐𝑜𝑠 (𝛹1)
𝑏 𝑠𝑖𝑛 (𝛹1)

} 

 

Eq 3: Angular equation 

𝜃1 + ∅1 + 𝛼 + 𝜆 = 𝛽1 

 

We will have 5 equations for each position. We can create 5 equations for the second position but 

the loop equation would be different because angles are different for a new position. For 4-bar 

linkage, we can write and solve these equations for a maximum of five positions (if you consider 

the orientation of the points but for points, without orientation you can reach more positions). 

 

Why use this method? This method gives us a systematic way of creating design equations that 

we don’t have when we use simpler distance constraint equations. This is good for more complex 

mechanisms. 
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Example: 6 bar linkages (there are several designs with one D.O.F.). As you can see there are one 

vector equation and two loop equations for each position and it is a little complicated but more 

systematic way to create a design equation. 

 

 

 

 

There are a few more 6-bar linkages. 
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Algebraic Synthesis for Input-Output Angles (Function Generation) 

So far we worked on the rigid body guidance (guiding the rigid body through certain positions on 

the plain) based on the distance constraint design equation (we can use the loop design equations 

to solve it too). In this part, we are trying to define the output motion as the function of the input. 

In the other words, give a set of input/output angles. 

𝜽 𝛹 

𝜽𝟏 𝚿𝟏 

𝜽𝟐 𝚿𝟐 

. 

. 

. 

. 

. 

. 

𝜽𝒏 𝚿𝒏 

 

 

We need to create some kind of design equation (unknown: all the dimensions of the 4bar linkage 

and the above table is our input data). There are several methods, but we will use Freudenstein's 

method. 

Freudenstein's method: Loop equation 

 

 

{
𝑎 𝑐𝑜𝑠 𝜃
𝑎 𝑠𝑖𝑛 𝜃

} + {
ℎ 𝑐𝑜𝑠 (𝜃 + ∅)
ℎ 𝑠𝑖𝑛 (𝜃 + ∅)

} = {
𝑔
0

} + {
𝑏 𝑐𝑜𝑠 (𝛹)
𝑏 𝑠𝑖𝑛 (𝛹)

} 
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We want to solve for the dimension of the links: 𝑎, 𝑏, ℎ, 𝑔 

In this case, we can scale it, because the input-output angle relation will not change if the size of 

the links increases or decrease with the same ratio! So, we can start solving our problem with one 

of the links equal to one (for instance “𝑔 = 1”) and after solving the problem, we can scale it back 

to any number we want. With this, we can eliminate one of the unknowns.  

However, based on loop equations, we still have 4 unknowns (𝑎, 𝑏, ℎ, ∅). We can square the loop 

equations and add them up to eliminate ∅ and obtain a design equation. 

[ℎ 𝑐𝑜𝑠 (𝜃 + ∅)]2 = (1 + 𝑏 𝑐𝑜𝑠 𝛹 − 𝑎 𝑐𝑜𝑠 𝜃)2 

[ℎ 𝑠𝑖𝑛 (𝜃 + ∅)]2 = (𝑏 𝑠𝑖𝑛 𝛹 − 𝑎 𝑠𝑖𝑛 𝜃)2 

ℎ2 = 1 + 𝑏2𝑐𝑜𝑠2 𝛹 + 𝑎2𝑐𝑜𝑠2 𝜃 − 2𝑎 𝑐𝑜𝑠 𝜃 + 2𝑏 𝑐𝑜𝑠 𝛹 − 2𝑎𝑏 𝑐𝑜𝑠 𝛹 𝑐𝑜𝑠 𝜃 + 𝑏2𝑠𝑖𝑛2𝛹

+ 𝑎2𝑠𝑖𝑛2𝜃 − 2𝑎𝑏 𝑠𝑖𝑛 𝛹 𝑠𝑖𝑛 𝜃 

ℎ2 − 1 − 𝑏2 − 𝑎2 = −2𝑎 𝑐𝑜𝑠 𝜃 + 2𝑏 𝑐𝑜𝑠 𝛹 − 2𝑎𝑏 𝑐𝑜𝑠 𝛹 𝑐𝑜𝑠 𝜃 − 2𝑎𝑏 𝑠𝑖𝑛 𝛹 𝑠𝑖𝑛 𝜃 

After simplifying: 

ℎ2 = 1 + 𝑏2 + 𝑎2 − 2𝑎 𝑐𝑜𝑠 𝜃𝑖 + 2𝑏 𝑐𝑜𝑠 𝛹𝑖 − 2𝑎𝑏 𝑐𝑜𝑠 (𝛹𝑖 − 𝜃𝑖) 

 

Three unknowns: 𝑎, 𝑏, ℎ 

We can solve for up to 3 sets of (𝜃𝑖 , 𝛹𝑖 ). If you define less, then you have to give value to one of 

the unknowns (links length a or b or h) 

Example: Let’s imagine we have the relation between 𝜃 & 𝛹 with this equation: 𝛹 = 𝑒𝜃. (To find 

this function, we have to take many values in this function and then do approximate synthesis (pass 

approximately through these angles)).  

We have to put three values for 𝜃 in this function and find values for 𝛹. 

𝜽 𝛹 

 

𝜽𝟏 =
𝝅

𝟒
 

 

 

Ψ1 = 2.19 rad 

 

𝜽𝟐 =
𝝅

𝟑
 

 

 

Ψ2 = 2.85 rad 

 

𝜽𝟑 =
𝝅

𝟐
 

 

 

 

Ψ3 = 4.81 rad 

 

Design equation 
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Now, just we need to put these values of 𝜃 & 𝛹 in the previous equation. 

Eq-1:           ℎ2 = 1 + 𝑏2 + 𝑎2 − 2𝑎 𝑐𝑜𝑠 (
𝝅

𝟒
) + 2𝑏 𝑐𝑜𝑠 (2.19) − 2𝑎𝑏 𝑐𝑜𝑠 (2.19 −

𝝅

𝟒
) 

Eq-2:          ℎ2 = 1 + 𝑏2 + 𝑎2 − 2𝑎 𝑐𝑜𝑠 (
𝝅

𝟑
) + 2𝑏 𝑐𝑜𝑠 (2.85) − 2𝑎𝑏 𝑐𝑜𝑠 (2.85 −

𝝅

𝟑
) 

Eq-3:          ℎ2 = 1 + 𝑏2 + 𝑎2 − 2𝑎 𝑐𝑜𝑠 (
𝝅

𝟐
) + 2𝑏 𝑐𝑜𝑠 (4.81) − 2𝑎𝑏 𝑐𝑜𝑠 (4.81 −

𝝅

𝟐
) 

Three equations and three unknowns (𝑎, 𝑏, ℎ) 

Final answer (solved in Mathematica, MATLAB, Maple, etc.): 

𝑎 = 10.7  

𝑏 = −0.6  

ℎ = 10.2  

What is the meaning of the negative link length (link b in this case)? 

Let’s take a look at the 4bar linkage for the first 𝜃 value. 

 

 

The negative value of “𝑏” means, the link 𝐶𝐵̅̅ ̅̅  is in the opposite direction of the angle of Ψ (with 

𝜋 difference). 
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Cam-Follower Systems 

In linkages, if we want to make a more complex motion we need to add more links and that makes 

the mechanism more complicated (e.g. 4-bar linkage maximum can go through 5 positions). With 

a single cam, you can generate different motions. One typical motion that you can create by cam 

is “dual motion” which means you will move in part of your cycle and then stay with no motion 

for part of your cycle (that is very hard to create with linkages). In the cam, it is so easy and if you 

just keep the radius of the cam constant, that means the follower will not move.    

https://www.youtube.com/watch?v=HsXWewecMLE 

Cam-Follower systems: Encode motion on the cam profile (compact solution) 

We need to keep the contact between cam and follower to have the motion based on the cam 

profile. For keeping the contact between cam and follower we need some force there. Two 

common solutions, in this case, are using a spring to apply force or making a slot on the cam to 

force the follower to go through that pattern.  

 

The cam-follower systems have some problems compared to linkages, such as more friction and 

dynamic effects (for instance in the spring at high speed) 

What is the mobility of Cam-Follower systems? 

 

n = 3    ,     j = 3     ,     𝑓𝑖 = 1 (except joint #2) 

 

𝑀 = 3(𝑛 − 1) − ∑ (3 − 𝑓𝑖) =  3 × (3 − 1) − 2 × (3 − 1) − 1 × (3 − 2) =  6 − 4 − 1 = 1
𝑗
𝑖=1   

Force 

closure 

Form 

closure 

https://www.youtube.com/watch?v=HsXWewecMLE
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There are many different ways to classify cam-follower systems. These classifications will affect 

follower displacement motion. 

A) Classify based on the type of motion.  

There are two types of motions:  

1) Translating: cam rotate(input motion) but the follower translates on a straight line  

 

 

2) Oscillating: cam rotate(input motion) and the follower will oscillate with some angles 
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B) Classify based on types of followers. 

 

1) Knife-Edged Follower: The follower will contact the cam only at one point. 

 

2) Roller Follower: The roller is allowed to rotate (an idle degree of freedom) 

 

3) Flat-Faced Follower: Plane contacts cam  

 

4) Cylindrical or Curved Follower: The follower has a particular shape for making a specific 

motion 

 

 

  

 

 

 

 

 

1 2 

3 4 
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C) Classify based on the type of assembly: It is related to how the follower is placed with 

respect to the cam pin. 

 

1) Radial: The follower is located aline with the pin joint of the cam  

 

 
 

2) Offset: There is a distance between the follower and the pin of the cam 
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Follower Displacement Motion 

The motion usually has: 

1) Rise (increase displacement) 

2) Dwell (constant displacement) 

3) Return/Fall (decrease displacement) 

Cam in most of the applications fully rotates. So, one cycle would be a rotation of the cam. We are 

going to plot the motion of the follower (𝑦) as a function of the angle of the cam (𝜃). 

 

This motion based on the designed cam-follower can be completely different but in most cases at 

the end of the cycle, the follower has to back to the start point (𝑦0). 
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 What is the cam shape for the following plot?  

 

Something like the following shape with a jump. 

 

Piecewise function 𝒚(𝜽): 

𝒚(𝜽) =

{
 
 

 
 

𝒚𝟎                            𝟎 ≤ 𝜽 < 𝜽𝟏
𝑷𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍          𝜽𝟏 ≤ 𝜽 < 𝜽𝟐 
𝒚𝟏                             𝜽𝟐 ≤ 𝜽 < 𝜽𝟑
𝑷𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍        𝜽𝟑 ≤ 𝜽 < 𝜽𝟒
𝒚𝟐                              𝜽𝟒 ≤ 𝜽 < 𝟐𝝅

 

Note: The rise and return functions are very curtailed in high-speed applications and usually these 

are some of the industrial secrets of the companies (effect on the increased efficiency, etc.). 

y0 

y2 
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How do define the rise and the return functions? There are a couple of methods. 

Just imagine we have the following plot and we want to reach from 𝑦1 to 𝑦2. One way of doing 

that is defining the set of points along the rise and defining the shape of the curve pointwise.   

         

Based on these points we can define the constants of the polynomial. 

𝑦(𝜃) = 𝑐0 + 𝑐1𝜃 + 𝑐2𝜃
2 + 𝑐3𝜃

3 + 𝑐4𝜃
4 +⋯ 

(𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, … ): 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑠ℎ𝑎𝑝𝑒 𝑡ℎ𝑒 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 

In the above example, we defined 8 points (6 points between the start and end points of the rise), 

so we can solve for 8 of these coefficients and have a 7-degree polynomial. 

 

𝑦(𝜃1) = 𝑐0 + 𝑐1𝜃1 + 𝑐2𝜃1
2 + 𝑐3𝜃1

3 + 𝑐4𝜃1
4 +⋯ = 𝑦1

𝑦(𝜃2) = 𝑐0 + 𝑐1𝜃2 + 𝑐2𝜃2
2 + 𝑐3𝜃2

3 + 𝑐4𝜃2
4 +⋯ = 𝑦2.

.

. }
 
 

 
 

 Set of linear equations in 𝐶𝑖′𝑠 

So if we have the plot and curve with this method we can find the mathematical function 

(polynomial) of that curve. As much as more points we have, we can find a better fit polynomial 

to the curve.  

Defining boundary conditions for continuity and smoothness: 

Another method for defining the rise/return curves is based on defining the boundary conditions. 

Continuity in the cam means there is not a big jump, in other words, there is not a big difference 

between “y“ values of points before and after each 𝜃 value. Smoothness is different from 

continuity. For having a smooth motion, the derivative of the function has to be a continuous 

function! In general, we want to impose continuous displacement, velocity, acceleration, and third 

derivative (jerk) in cams. Jerk is related to impact. If you want to minimize the impact, you need 

to have continuous jerk.   
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The function is 

continues but 

not smooth 

Derivative of 

function is not 

continues 
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Cam-Follower Systems (Continue) 

Example: In the following plot, we have a displacement function of a cam. Plot the velocity, 

acceleration, and jerk for this function.  Which one is continuous and which one is discontinuous?  

 

In this particular cam, we accomplish the continuity of the displacement but we don’t have 

smoothness because the velocity curve is not continuous. In the acceleration plot, for zero velocity 

we will have zero acceleration. Also, for the constant velocity, we have zero acceleration but we 

have to have a jump in switching the velocity between zero and a constant value. This jump is 

shown with an arrow. In reality, it cannot happen because the physical system does not allow that, 

you will have a very deep change (peak) at that point. These jump points are the points where 

dynamic effects happen and they are important for us and have to be shown in plots. For the jerk 

plot, at the same points of the jump for acceleration, we will have very high jumps in jerk which 

are shown with double arrows. 

Example: In the following plot, we have a displacement function of a cam. Plot the velocity, 

acceleration, and jerk for this function.  Which one is continuous and which one is discontinuous?  

Positive slop 

Negative slop 
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Example: In the following plot we only know information about the initial and final point of a rise 

(we don’t know anything about before and after these points).  

 

Two quadratic functions 
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The boundary conditions for continuous displacement  

𝑦(𝜃1) = 𝑦1 

𝑦(𝜃2) = 𝑦2 

The boundary conditions for continuous velocity  

𝑣(𝜃1) = 𝑣1 

𝑣(𝜃2) = 𝑣2 

Note: The 𝑣1 & 𝑣2 are the values of the velocity, so that 𝑣(𝜃) is continuous.  

The boundary conditions for continuous acceleration 

𝑎(𝜃1) = 𝑎1 

𝑎(𝜃2) = 𝑎2 

If “y” is the displacement function, velocity would be: 

𝑣 = �̇� =
𝑑𝑦

𝑑𝜃
.
𝑑𝜃

𝑑𝑡
= 𝑦′. �̇� 

�̇�: Angular velocity of the cam which is usually constant for cams because we can change the 

speed based on the cam profile. 

For acceleration, we will have: 

𝑎 = �̈� = 𝑦′′. �̇�2 + 𝑦′. �̈� = 𝑦′′. �̇�2 

For jerk, we will have: 

𝑗 = 𝑦′′′. �̇�3 

Polynomial functions for the rise and return: 

To make it easier to solve the rise (return) polynomial function, we will use standard scaled and 

shifted polynomial functions.  

 

0 (�̇� = constant) 
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Rather than:                              𝑦(𝜃) = 𝑐0 + 𝑐1𝜃 + 𝑐2𝜃
2 + 𝑐3𝜃

3 + 𝑐4𝜃
4 +⋯ 

We will write it like this:  𝑦 (𝜃) = 𝑐0 + 𝑐1
𝜃−𝜃1

𝜃2−𝜃1
+ 𝑐2

(𝜃−𝜃1)
2

(𝜃2−𝜃1)2
+ 𝑐3

(𝜃−𝜃1)
3

(𝜃2−𝜃1)3
+ 𝑐4

(𝜃−𝜃1)
3

(𝜃2−𝜃1)3
+⋯ 

 (𝜃2 − 𝜃1): It is a constant value 

 

A) Uniform Motion: it includes straight lines and is good for low-speed motion. 

 

 

For uniform motion, the only condition is continuity of displacement.  

For the rise, we have these two conditions: 

𝑦(𝜃1) = 𝑦0 

𝑦(𝜃2) = 𝑦1 

What would be the degree of the polynomial? We have two conditions and we can only find two 

coefficients. You have to trim the polynomial according to the number of boundary conditions or 

points that you have.  

𝑦(𝜃) = 𝑐0 + 𝑐1
𝜃 − 𝜃1
𝜃2 − 𝜃1

 

 Also, if you look at the plot, for the rise, we have a line, and the above equation is a line 

equation!  

y0 

y1 
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𝑐0 & 𝑐1: Unknown coefficients  

𝜃1 , 𝜃2 , 𝑦0 , 𝑦1: Known parameters  

Impose the boundary conditions: 

𝑦(𝜃1) = 𝑐0 + 𝑐1
𝜃1−𝜃1

𝜃2−𝜃1
= 𝑦0              𝑐0 = 𝑦0 

 

𝑦(𝜃2) = 𝑐0 + 𝑐1
𝜃2−𝜃1

𝜃2−𝜃1
= 𝑦0 + 𝑐1 = 𝑦1           𝑐1 = 𝑦1 − 𝑦0 

 

For the return, we can repeat the same method. For the return, we have these two conditions: 

𝑦(𝜃3) = 𝑦1 

𝑦(𝜃4) = 𝑦0 

The polynomial for the return would be: 

𝑦(𝜃) = 𝑘0 + 𝑘1
𝜃 − 𝜃3
𝜃4 − 𝜃3

 

Impose the boundary conditions and solve for 𝑘0 & 𝑘1: 

 

𝑦(𝜃3) = 𝑘0 + 𝑘1
𝜃3−𝜃3

𝜃4−𝜃3
= 𝑦1              𝑘0 = 𝑦1 

 

𝑦(𝜃4) = 𝑘0 + 𝑘1
𝜃4−𝜃3

𝜃4−𝜃3
= 𝑦1 + 𝑘1 = 𝑦0            𝑘1 = 𝑦0 − 𝑦1 

Now, we have our polynomial function for the whole displacement! 

𝑦(𝜃) =

{
 
 
 

 
 
 
                  𝑦0                                0 ≤ 𝜃 < 𝜃1

𝑦0 + (𝑦1 − 𝑦0)
𝜃 − 𝜃1
𝜃2 − 𝜃1

          𝜃1 ≤ 𝜃 < 𝜃2 

                  𝑦1                               𝜃2 ≤ 𝜃 < 𝜃3

𝑦1 − (𝑦1 − 𝑦0)
𝜃 − 𝜃3
𝜃4 − 𝜃3

          𝜃3 ≤ 𝜃 < 𝜃4

                  𝑦0                               𝜃4 ≤ 𝜃 < 2𝜋

 

This is the mathematical model of the cam profile. 

Let’s take the derivative and write the velocity function. 

𝑣(𝜃) = �̇�(𝜃) =
𝑑𝑦

𝑑𝑡
=

𝑑𝑦

𝑑𝜃
.
𝑑𝜃

𝑑𝑡
=

𝑑𝑦

𝑑𝜃
. 𝜔  

0 

1 

1 

0 
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𝑣(𝜃) =

{
 
 
 

 
 
 

                  0                                0 ≤ 𝜃 < 𝜃1

           
(𝑦1 − 𝑦0)

𝜃2 − 𝜃1
. �̇�                      𝜃1 ≤ 𝜃 < 𝜃2 

                  0                               𝜃2 ≤ 𝜃 < 𝜃3

     −
(𝑦1 − 𝑦0)

𝜃4 − 𝜃3
 . �̇�                        𝜃3 ≤ 𝜃 < 𝜃4

                   0                               𝜃4 ≤ 𝜃 < 2𝜋

 

If you check the plot of velocity for uniform motion, you will see the same results. Remember, in 

sections 2 & 4, the numerator of the velocity function is the same, based on the intervals (𝜃2 − 𝜃1) 

& (𝜃4 − 𝜃3), each one is bigger, and the velocity of that section would be smaller. 

If we do the second derivative (acceleration), 

𝑎(𝜃) =

{
 
 

 
 
   0                                0 ≤ 𝜃 < 𝜃1
     0                               𝜃1 ≤ 𝜃 < 𝜃2 
     0                               𝜃2 ≤ 𝜃 < 𝜃3
     0                               𝜃3 ≤ 𝜃 < 𝜃4
     0                              𝜃4 ≤ 𝜃 < 2𝜋

 

Would be the same for the third derivative (jerk): 

𝑗(𝜃) =

{
 
 

 
 
   0                                0 ≤ 𝜃 < 𝜃1
     0                               𝜃1 ≤ 𝜃 < 𝜃2 
     0                               𝜃2 ≤ 𝜃 < 𝜃3
     0                               𝜃3 ≤ 𝜃 < 𝜃4
     0                              𝜃4 ≤ 𝜃 < 2𝜋

 

Remember to add the arrows (or double arrows) in your plots. Those are super important (they 

mean discontinuity). If you use MATLAB, Maple, etc. for plots, you have to add the arrows by 

hand. 

 Do you think a cam with “Uniform Motion” would be a good design for a cam? 

Depends on the application. That may work for low-speed applications but for high-speed 

applications, it is not good because of the big impact effects. 

 

 What would the cam profile look like for the previous example? 
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Cam-Follower Systems (Continue) 

B) Parabolic Motion: It is a 2nd-degree polynomial  

 

𝑦(𝜃) = 𝑐0 + 𝑐1

𝜃 − 𝜃1

𝜃2 − 𝜃1
+ 𝑐2 (

𝜃 − 𝜃1

𝜃2 − 𝜃1
)

2

 

We have different options to find the three coefficients for this parabola.  

 

 Defining three points: 𝑦(𝜃1), 𝑦(𝜃2), and one point in the middle 𝑦(𝜃𝑚). But then we cannot 

able to check the smoothness of the boundary points. In other words, may we have 2nd 

order polynomial and continuous at both ends but it is not smooth! 
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 Using boundary conditions: in this case, we need three boundary conditions 

 

𝑦(𝜃1) = 𝑦0 

𝑦(𝜃2) = 𝑦1 

But we need one more boundary condition. It can be related to the velocity of the start or 

end point. 

 

𝑣(𝜃1) = 0 

If we want to have a smooth motion, we need the velocity before and after that specific 

point (in this case 𝜃1) to be the same. In the following example, we have the velocity before 

and after 𝜃1 equal zero (𝑣0 = 0). 

 

 
 

But for 2nd order polynomial, we can have control over one of the velocities (start or end 

point). Therefore, one of them become not smooth! If we want to have smoothness at both 

ends, we need to use a higher degree polynomial. 
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C) 3rd-degree polynomial 

𝑦(𝜃) = 𝑐0 + 𝑐1

𝜃 − 𝜃1

𝜃2 − 𝜃1
+ 𝑐2 (

𝜃 − 𝜃1

𝜃2 − 𝜃1
)

2

+ 𝑐3 (
𝜃 − 𝜃1

𝜃2 − 𝜃1
)

3

 

In this case, we will have 4 boundary conditions: 

𝑦(𝜃1) = 𝑦0 

𝑦(𝜃2) = 𝑦1 

𝑣(𝜃1) = 0 

𝑣(𝜃2) = 0 

Solve for the coefficients: 

𝑦(𝜃1) = 𝑦0 = 𝑐0 + 𝑐1

𝜃1 − 𝜃1

𝜃2 − 𝜃1
+ 𝑐2 (

𝜃1 − 𝜃1

𝜃2 − 𝜃1
)

2

+ 𝑐3 (
𝜃1 − 𝜃1

𝜃2 − 𝜃1
)

3

 

𝑐0 = 𝑦0 

 

𝑦(𝜃2) = 𝑦1 = 𝑦0 + 𝑐1

𝜃2 − 𝜃1

𝜃2 − 𝜃1
+ 𝑐2 (

𝜃2 − 𝜃1

𝜃2 − 𝜃1
)

2

+ 𝑐3 (
𝜃2 − 𝜃1

𝜃2 − 𝜃1
)

3

 

 

𝑦1 = 𝑐0 + 𝑐1 + 𝑐2 + 𝑐3 

Take derivative to find the 𝑣(𝜃): 

𝑣(𝜃) = (
𝑐1

𝜃2 − 𝜃1
+

2 𝑐2(𝜃 − 𝜃1)

(𝜃2 − 𝜃1)2
+

3 𝑐3(𝜃 − 𝜃1)2

(𝜃2 − 𝜃1)3
) �̇� 

 

𝑣(𝜃1) = 0 = (
𝑐1

𝜃2 − 𝜃1
+

2 𝑐2(𝜃1 − 𝜃1)

(𝜃2 − 𝜃1)2
+

3 𝑐3(𝜃1 − 𝜃1)2

(𝜃2 − 𝜃1)3
) �̇� 

𝑐1

𝜃2−𝜃1
�̇� = 0           𝑐1 = 0 

 

𝑣(𝜃2) = 0 = (
𝑐1

𝜃2 − 𝜃1
+

2 𝑐2(𝜃2 − 𝜃1)

(𝜃2 − 𝜃1)2
+

3 𝑐3(𝜃2 − 𝜃1)2

(𝜃2 − 𝜃1)3
) �̇� 

(𝑐1 + 2 𝑐2 + 3 𝑐3)
�̇�

𝜃2−𝜃1
= 0            𝑐1 + 2 𝑐2 + 3 𝑐3 = 0 

0 0 0 

1 
1 1 

0 0 

1 

2 

3 

4 
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So, 

𝑐0 = 𝑦0 

𝑐1 = 0 

2 𝑐2 + 3 𝑐3 = 0           𝑐3 = −
2

3
𝑐2 

𝑐2 + 𝑐3 = 𝑦1 − 𝑦0           𝑐2 −
2

3
𝑐2 = 𝑦1 − 𝑦0          

1

3
𝑐2 = 𝑦1 − 𝑦0           𝑐2 = 3(𝑦1 − 𝑦0) 

𝑐3 = −
2

3
× 3(𝑦1 − 𝑦0) = −2(𝑦1 − 𝑦0) 

Therefore, for the rise we will have: 

𝑦(𝜃) = 𝑦0 + 3(𝑦1 − 𝑦0) (
𝜃 − 𝜃1

𝜃2 − 𝜃1
)

2

− 2(𝑦1 − 𝑦0) (
𝜃 − 𝜃1

𝜃2 − 𝜃1
)

3

 

𝑣(𝜃) = (6(𝑦1 − 𝑦0)
(𝜃 − 𝜃1)

(𝜃2 − 𝜃1)2
− 6(𝑦1 − 𝑦0)

(𝜃 − 𝜃1)2

(𝜃2 − 𝜃1)3
) �̇� 

 Both  𝑣(𝜃1) = 0 and  𝑣(𝜃2) = 0 as we want and the function is smooth at both ends. 

𝑎(𝜃) = (
6(𝑦1 − 𝑦0)

(𝜃2 − 𝜃1)2
−

12(𝑦1 − 𝑦0)

(𝜃2 − 𝜃1)3
(𝜃 − 𝜃1)) �̇�2 

 

 

Note: We assumed 𝜔 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 so �̈� = 0. Basically, in most of the cases, the cam is rotating 

with constant angular velocity but the follower based on the cam profile still can have linear 

acceleration! 

It is a line 
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D) 5th-degree polynomial: If we want to reach smoothness at displacement and velocity. In 

this case, we will have 6 boundary conditions. 

 

Example: For the following boundary conditions: a) find the degree of the polynomial for the rise 

b) find the coefficient of the polynomial c) write the equation for the polynomial and d) plot 

displacement, velocity, acceleration, and jerk. 

𝑦(𝜃1) = 𝑦0 

𝑦(𝜃2) = 𝑦1 

𝑣(𝜃1) = 0 

𝑣(𝜃2) = 0 

𝑎(𝜃1) = 0 

𝑎(𝜃2) = 0 
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a) We have 6 boundary conditions, so we will have a 5th-degree polynomial  

b) If you solve for coefficients, you will find: 

𝑐0 = 𝑦0     ,       𝑐1 = 0     ,      𝑐2 = 0 

𝑐3 = 10(𝑦1 − 𝑦0) 

𝑐4 = −15(𝑦1 − 𝑦0) 

𝑐5 = 6(𝑦1 − 𝑦0) 

c)  

𝑦(𝜃) = 𝑐0 + 𝑐1

𝜃 − 𝜃1

𝜃2 − 𝜃1

+ 𝑐2 (
𝜃 − 𝜃1

𝜃2 − 𝜃1

)
2

+ 𝑐3 (
𝜃 − 𝜃1

𝜃2 − 𝜃1

)
3

+ 𝑐4 (
𝜃 − 𝜃1

𝜃2 − 𝜃1

)
4

+ 𝑐5 (
𝜃 − 𝜃1

𝜃2 − 𝜃1

)
5

 

𝑦(𝜃) = 𝑦0 + 10(𝑦1 − 𝑦0) (
𝜃 − 𝜃1

𝜃2 − 𝜃1

)
3

− 15(𝑦1 − 𝑦0) (
𝜃 − 𝜃1

𝜃2 − 𝜃1

)
4

+ 6(𝑦1 − 𝑦0) (
𝜃 − 𝜃1

𝜃2 − 𝜃1

)
5

 

 

d) For plots we will have: 

 

E) 7th-degree polynomial: If we want to reach smoothness at displacement, velocity, and 

acceleration. In this case, we will have 8 boundary conditions.  You can repeat the same 

process and find all coefficients. 
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Other possible requirements in the displacement function: Till now, we had a polynomial and 

check the information about displacement, velocity, acceleration, and jerk but we can look at the 

problem backward. For instance, find displacement for: 

 Constant velocity rise/return 

 Constant acceleration rise/return 

 The constant velocity with smooth boundaries 

. 

. 

.  

 

Example: Find the displacement for constant acceleration rise: 

 

Just we know the acceleration is constant (not continuous). For instance, we can say 𝑎 = 𝑘0. 

Then velocity would be 1st-degree polynomial and displacement 2nd-degree polynomial. 

 

𝑎 = 𝑘0 

𝑣 = 𝑘0𝜃 + 𝑘1 

𝑦 = 𝑘0

𝜃2

2
+ 𝑘1𝜃 + 𝑘2 

So, we can use a 2nd-degree polynomial! We can use the nice polynomial that we have from before 

for the 2nd-degree polynomial: 

 

𝑦(𝜃) = 𝑐0 + 𝑐1

𝜃 − 𝜃1

𝜃2 − 𝜃1
+ 𝑐2 (

𝜃 − 𝜃1

𝜃2 − 𝜃1
)

2

 

 

𝑣(𝜃) = (
𝑐1

(𝜃2 − 𝜃1)
+

2𝑐2

(𝜃2 − 𝜃1)2
(𝜃 − 𝜃1)) �̇� 

𝑎(𝜃) =
2𝑐2

(𝜃2 − 𝜃1)2
�̇�2 

Impose the given conditions: 

 

𝑎(𝜃) = 𝑘0 =
2𝑐2

(𝜃2−𝜃1)2 �̇�2                     (𝑐2 can be found) 

 

We still have to find two more coefficients (𝑐0 & 𝑐1), but we don’t have enough information. As 

a designer, we can select two other conditions to solve the problem and find values of 𝑐0 & 𝑐1. For 

instance, the velocity at one of the boundary points can be continuous or the velocity of the 

midpoint equal zero (𝑣 (
𝜃1+𝜃2

2
) = 0). 

 



ME 3320 Lecture 17 
 

1 
 

Cam-Follower Systems (Continue) 

Cam Displacement Functions: (Waldron (3rd edition) Ch.10 & Norton Ch.8) 

 

1) Uniform/Trapezoidal Motion (1st Degree polynomial) 

 

 
 

2) Parabolic Motion (two 2nd degree polynomial) 

 

 
 

3) Modified Trapezoid: Trapezoidal with smooth ends (combination of #1 & #2) 
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The fundamental law of cam design: “For cam designed for moderate to high speed, the 

displacement function must be continuous through the 1st and 2nd derivatives all along the motion.” 

That means, for a high-speed cam, displacement, velocity, and acceleration have to be continuous. 

Therefore, none of the previous options are good for high-speed motion. 

4) General Polynomial function 

4a) 3-4-5 Polynomial (displacement, velocity, and acceleration are continuous) 

𝑦(𝜃) = 𝑐3 (
𝜃 − 𝜃1

𝜃2 − 𝜃1

)
3

+ 𝑐4 (
𝜃 − 𝜃1

𝜃2 − 𝜃1

)
4

+ 𝑐5 (
𝜃 − 𝜃1

𝜃2 − 𝜃1

)
5

 

 

4b) 4-5-6-7 Polynomial (displacement, velocity, acceleration, and jerk are continuous) 

𝑦(𝜃) = 𝑐4 (
𝜃 − 𝜃1

𝜃2 − 𝜃1

)
4

+ 𝑐5 (
𝜃 − 𝜃1

𝜃2 − 𝜃1

)
5

𝑐6 (
𝜃 − 𝜃1

𝜃2 − 𝜃1

)
6

+ 𝑐7 (
𝜃 − 𝜃1

𝜃2 − 𝜃1

)
7

 

 

 These polynomial are for standard cam profile (from one dwell go to another dwell). 

However, if we are not working with a standard case, then the coefficients would be 

different. 



ME 3320 Lecture 17 
 

3 
 

5) Standard Harmonic Motion (SHM): Sinusoidal function (𝑆𝑖𝑛 & 𝐶𝑜𝑠)   

In this case, the center of rotation of the cam (point of the pin) has to be offset from the 

center of the circular wheel. The acceleration is not continuous, so it is not good for high 

speed. 

 

 

 

 

 

 

 

 

 

 

 

The general harmonic motion equation 

 
𝑦(𝜃) = 𝑐0 + 𝑐1 𝑐𝑜𝑠 (𝑐2𝜃 + 𝑐3) 

 

 
 

6) Cycloidal Motion (based on 𝑠𝑖𝑛 & 𝑐𝑜𝑠): Displacement, velocity, and acceleration are 

continuous 

 
𝑦(𝜃) = 𝑐𝑜𝑠 𝜃 + 𝑐1 𝑠𝑖𝑛 (𝑐2𝜃 + 𝑐3) 
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Determination of the Cam Profile 
 

Our input for the design of the cam is 𝑦(𝜃). Depending on the type of follower and the location of 

the follower, the cam profile would be different.  

 

Types of followers: 

 

1) Knife-Edged Follower-Radial (no offset) 

 

The base circle is really important in designing the cam because if your system allowed a certain 

offset, changing this base circle, would change the shape of your cam. 

 

y=0 at low dwell 

y=r0 at low dwell 
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Invert the cam-follower system: The easier way to see how to carve the cam profile is using 

inversion (changing the ground link). So, we will fix the cam and move the follower around the 

cam.  

 

 

Inversion_1 Inversion_2 

R (0) 

R (0) 
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Define cam profile as the radius vector 𝑅(𝜃) 

 

We will find the radius of the cam for different angles (𝑅(𝜃1) for 𝜃1, 𝑅(𝜃2) for 𝜃2, etc.) 

 

𝑅(𝜃) = {
𝑦(𝜃) 𝑐𝑜𝑠 (−𝜃)

𝑦(𝜃) 𝑠𝑖𝑛 (−𝜃)
} = {

𝑦(𝜃) 𝑐𝑜𝑠 (𝜃)

−𝑦(𝜃) 𝑠𝑖𝑛 (𝜃)
}      If cam rotates counterclockwise (CCW) 

 

𝑅(𝜃) = {
𝑦(𝜃) 𝑐𝑜𝑠 (𝜃)

𝑦(𝜃) 𝑠𝑖𝑛 (𝜃)
}      If cam rotates clockwise (CW) 

 

𝑅(𝜃) = {
(𝑟0 + 𝑦(𝜃)) 𝑐𝑜𝑠 (𝜃)

(𝑟0 + 𝑦(𝜃)) 𝑠𝑖𝑛 (𝜃)
}      If we use a base radius and cam rotate clockwise (CW) 

 

Note: If the cam rotates CCW, in the inversion (fix the cam and moving follower) the follower 

will move CW and have a negative angle! If the cam rotates CW, the follower will move CCW 

and have a positive angle! 
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Note: Only for a radial knife-edged follower, the cam profile is just the polar coordinate plot of  

𝑦(𝜃) or (𝑟0 + 𝑦(𝜃)). It is not true for other followers. 

 

Another way to find the cam profile is by making a table for 𝜃 & 𝑅(𝜃): 

𝜃 𝑅(𝜃) 

1° . 

2° . 

. . 

. . 

. . 

360° . 

 

2) Knife-Edged Follower with Offset 

 

For CW rotating cam: The follower has a constant offset “e”. The radius is the touch point between 

cam and follower and shows with the angle of “𝜃 + 𝛼”  

 

 

𝑅(𝜃) = {
𝑦(𝜃) 𝑐𝑜𝑠 (𝜃) + 𝑒 𝑐𝑜𝑠 (𝜃 +

𝜋

2
)

𝑦(𝜃) 𝑠𝑖𝑛 (𝜃) + 𝑒 𝑠𝑖𝑛 (𝜃 +
𝜋

2
)

} = {
𝑦(𝜃) 𝑐𝑜𝑠 (𝜃) − 𝑒 𝑠𝑖𝑛 (𝜃)

𝑦(𝜃) 𝑠𝑖𝑛 (𝜃) + 𝑒 𝑐𝑜𝑠 (𝜃)
}    If cam rotates clockwise (CW) 

𝑅(𝜃) = {
(𝑟0 + 𝑦(𝜃)) 𝑐𝑜𝑠 (𝜃) − 𝑒 𝑠𝑖𝑛 (𝜃)

(𝑟0 + 𝑦(𝜃)) 𝑠𝑖𝑛 (𝜃) + 𝑒 𝑐𝑜𝑠 (𝜃)
}   If we use a base radius and cam rotate clockwise (CW) 

In the above equations by playing with the base radius or offset, we can modify our cam profile. 

Inversion_1 Inversion_2 



ME 3320 Lecture 18 
 

1 
 

Cam-Follower Systems (Continue) 

Transmission Pressure Angle: The pressure angle is the angle between the direction of 

application of the force and the direction of the velocity. So, it is related to the power (𝑃𝑜𝑤𝑒𝑟 =

�̅� . �̅�). 

 

 
∅: Transmission Pressure Angle 

 

If the pressure angle is zero, you can transmit maximum power for the same force that you are 

inputting.  

 

What happens if the transmission pressure angle is 90°?  The system is not moving. 

 

Design guideline: We want an approximate transmission pressure angle (∅) between 0° to 30°. 

The transmission pressure angle is the function of 𝜃 and will change along the motion but we can 

modify it in the key parts of our cam profile where we want maximum power at the output. 

Modifying offset (𝑒) will modify the transmission pressure angle (∅). 

 

Based on the type of follower, we will have different pressure angles. 

 

𝐹 𝑐𝑜𝑠 ∅: This component is in direction of 𝑉 and creates the motion. 

𝐹 𝑠𝑖𝑛 ∅: This component is an undesirable reaction force. 

 

To calculate the direction of the force, use �̅�(𝜃) =
𝑑2�̅�(𝜃)

𝑑𝜃2  (�̅�(𝜃) is the vector that defines your 

profile). Then, makes it a unit vector (�̅�𝑢𝑛𝑖𝑡(𝜃) = (
�̅�(𝜃)

‖�̅�(𝜃)‖
)) and dot product with the direction (unit 

vector) of velocity (�̅�). This will give you the 𝑐𝑜𝑠 (∅). 

 

Note: �̅�. �̅� = ‖�̅�‖‖�̅�‖ 𝑐𝑜𝑠 ∅  

 

F sin ∅ 

F cos ∅ 

∅ 
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The pressure angle(∅) is a function of 𝜃. In this plot, the pressure angle has to be positive (∅ ≥

0).  

 

 
 

Note: The 1st derivative would be the tangent and 2nd derivative would be normal to the curve. 

 

 

Analytical Determination of Cam Profile: 

 

Cam Radius of Curvature (𝝆): We will have four different values for this radius. (Curvature (k) 

is the inverse of the radius of curvature 𝑘 =
1

𝜌
) 

                   
Convex VS Concave: For Convex, the line between any two points will stay inside of the close 

curve but for concave the line between two points crosses outside of the close curve. 

 

Concave: 𝜌 < 0 

 

Cusp: 𝜌 = 0 

 

Convex: 𝜌 > 0 

 

Transition: 𝜌 = ∞ 
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The cam radius of curvature is important for several reasons: 

 If the cam is concave in a given area, the radius of curvature determines the minimum 

radius of the cutter that can be used to machine the cam and the minimum radius of the 

follower that can be used with the cam. 

 The contact stresses between the cam and the follower are a function of the cam radius of 

curvature. 

 Depending on your follower (Flat-Faced or Roller), you won’t be able to follow the 

displacement in the concave areas.  

Flat-Faced followers and Roller followers are the two most common types of followers. 

 
If we have a Flat-Faced follower, the follower on concave areas, will miss the return and rise part 

of the displacement function for the cam profile on that area. Same thing for roller follower with 

a bigger radius than the concave curvature.    

 

 
 We don’t want a cusp case (𝜌 = 0) in our cam. 

Base radius (𝒓𝟎): This is important for us to avoid problems of curvature in the cam profile. For 

instance, when we are creating the displacement function of our follower, we don’t know if we 

Concave Convex 

Roller Follower Flat-Faced Follower 
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have a cusp case (𝜌 = 0) or not, and this is not a type of discontinuity that we specified in our 

displacement function and it is related to selected base radius for the cam.  

 

 
How to find the shape and radius of curvature? If we have a planar curve, for any three points 

(relatively close to each other) on the curve, we can find the center of curvature from the 

intersection of bisector normal lines. 

The following formula is a general formula for finding the radius of any curvature (𝜌). 

 

Given: �̅�(𝜃) = {
𝑥(𝜃)
𝑦(𝜃)

} 

 

�̅� (𝜃) =  �̅�′(𝜃) =
𝑑�̅�(𝜃)

𝑑𝜃
= {

𝑣𝑥(𝜃)

𝑣𝑦(𝜃)
}  

�̅� (𝜃) =  �̅�"(𝜃) =
𝑑2�̅�(𝜃)

𝑑𝜃2 = {
𝑎𝑥(𝜃)
𝑎𝑦(𝜃)

}  

 

Note:  �̅�′(𝜃) &  �̅�"(𝜃) are 1st and 2nd derivatives of �̅�(𝜃) respect to 𝜃 (not time) 

 

𝜌 =
(𝑣𝑥

2+𝑣𝑦
2)

3
2⁄

𝑣𝑥𝑎𝑦−𝑣𝑦𝑎𝑥
  

 

𝜌 =
(�̅� (𝜃).�̅� (𝜃))

3
2⁄

�̅� (𝜃)×�̅� (𝜃)
        

 

 

𝜌 is a function of 𝜃. If we plot it based on 𝜃 values, you can see, 0, positive, negative, and 

infinity values for 𝜌. 

 

In vector form (dot product: (.), 

cross product: (×)) 



ME 3320 Lecture 18 
 

5 
 

 
 

Design guideline: Always, we want 𝜌 > 0. To avoid having a negative radius of curvature, we 

can select our base radius (𝑟0) 2-3 times of maximum rise (𝑦𝑚𝑎𝑥). Still, you have to check but in 

most cases, you will have a positive value for the radius of curvature. 

 

 

1) Flat-Faced Follower  

The Flat-Faced Followers can be radial or not radial but the difference between them is very little. 

 

 

Inversion_1 
Inversion_2 

CCW 
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�̅�(𝜃) = {
𝑦(𝜃) 𝑐𝑜𝑠 𝜃 + 𝑡(𝜃) 𝑐𝑜𝑠 (𝜃 +

𝜋

2
)

𝑦(𝜃) 𝑠𝑖𝑛 𝜃 + 𝑡(𝜃) 𝑠𝑖𝑛 (𝜃 +
𝜋

2
)

} = {
𝑦(𝜃) 𝑐𝑜𝑠 𝜃 − 𝑡(𝜃) 𝑠𝑖𝑛 𝜃

𝑦(𝜃) 𝑠𝑖𝑛 𝜃 + 𝑡(𝜃) 𝑐𝑜𝑠 𝜃
} 

�̅�(𝜃) = {
𝑦(𝜃) 𝑐𝑜𝑠 (−𝜃) − 𝑡(𝜃) 𝑠𝑖𝑛 (−𝜃)

𝑦(𝜃) 𝑠𝑖𝑛 (−𝜃) + 𝑡(𝜃) 𝑐𝑜𝑠 (−𝜃)
} = {

𝑦(𝜃) 𝑐𝑜𝑠 (𝜃) + 𝑡(𝜃) 𝑠𝑖𝑛 𝜃

−𝑦(𝜃) 𝑠𝑖𝑛 𝜃 + 𝑡(𝜃) 𝑐𝑜𝑠 𝜃
} 

 

Note: 𝑅(𝜃) for most of the followers (except the radial knife-edged follower) does not correspond 

to (𝜃) (it is not located at 𝜃). That is why we cannot do the polar plot for other types of followers 

because 𝑅(𝜃) is not located at 𝜃. But 𝑦(𝜃) is located at 𝜃 because we create the displacement 

function in that way. 

Note: 𝑡(𝜃) is showing the distance between the contact point and center of the follower and this 

distance will change during motion. We can prove that: 𝑡(𝜃) = 𝑦′(𝜃) =
𝑑𝑦(𝜃)

𝑑𝜃
 (the proof in the 

book). 

�̅�(𝜃) = {
𝑦(𝜃) 𝑐𝑜𝑠 𝜃 − 𝑦′(𝜃) 𝑠𝑖𝑛 𝜃

𝑦(𝜃) 𝑠𝑖𝑛 𝜃 + 𝑦′(𝜃) 𝑐𝑜𝑠 𝜃
} 

You can use this vector and create points for different values of “𝜃” and plot your cam profile 

(0 < 𝜃 ≤ 2𝜋). 

Pressure Angle for Flat-Faced Follower: 

Always, for flat-faced followers, we will have zero pressure angle (∅ = 0)! This is the main 

advantage of flat-faced followers. However, because of the offset of the contact point and line 

between the follower and center of the cam, we still have the moment reaction (reaction force).  

 

 

 

If cam rotate 

counterclockwise (CW) 

If cam rotate 

counterclockwise (CCW) 



ME 3320 Lecture 18 
 

7 
 

Minimum base radius to avoid concave areas for flat-faced followers: 

As it is mentioned before the flat-faced followers have problems with concave and we have to 

avoid them in our cam design. In that case, we need to have a positive value for the radius of 

curvature. 

𝜌 is the function of �̅�′(𝜃) & �̅�"(𝜃) (for �̅�(𝜃) = {
(𝑟0 + 𝑦(𝜃)) 𝑐𝑜𝑠 𝜃 − 𝑦′(𝜃) 𝑠𝑖𝑛 𝜃

(𝑟0 + 𝑦(𝜃)) 𝑠𝑖𝑛 𝜃 + 𝑦′(𝜃) 𝑐𝑜𝑠 𝜃
}). We can 

write the equation for 𝜌 and put it equal to zero to find the limit value for 𝑟0. After a long calculation 

we will have: 

 

𝑟0 ≥ −𝑦(𝜃) − 𝑦"(𝜃) 

 

Face Length of the Follower: 

The minimum & maximum face length of the follower 𝑡(𝜃) can be calculated from the following 

equations (they can be found from the vector): 

 

𝑡𝑚𝑎𝑥 = 𝑦′(𝜃)|𝑚𝑎𝑥 

𝑡𝑚𝑖𝑛 = 𝑦′(𝜃)|𝑚𝑖𝑛 

Note: We don’t have a formula for roller follower and that is a numerical process. So, in this class, 

we will not cover that type of follower. 

 

How to design Cam-profile in SolidWorks? 

https://www.youtube.com/watch?v=Wn7CW9y42Pg&list=LL&index=10  

https://www.youtube.com/watch?v=yhZ3N_cJLM0&list=LL&index=11  

 

 

 

 

https://www.youtube.com/watch?v=Wn7CW9y42Pg&list=LL&index=10
https://www.youtube.com/watch?v=yhZ3N_cJLM0&list=LL&index=11
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Gear Systems 

In a gear system, we want a constant input/output velocity ratio. So, for a constant input angular 

velocity (𝜔𝑖𝑛), we want another different constant output angular velocity (𝜔𝑜𝑢𝑡). The best way to 

model that is using sticky wheels which in the contact point kind of stick to each other when one 

of them rotates in one direction the other one will rotate in opposite direction. The contact point 

(point A) will have a velocity �̅�𝐴. 

 

Gear Ratio/Velocity Ratio (𝑹): It is the ratio of input angular velocity over output angular 

velocity and it would be a constant value. 

𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
 

From the above figure, we will have: 

𝑣𝐴 = 𝜔𝑖𝑛. 𝑟𝑖𝑛 = −𝜔𝑜𝑢𝑡. 𝑟𝑜𝑢𝑡 

 

𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
= −

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛
 

So by changing the radius of your wheels, you will have all possible velocity ratios. The radius of 

sticky circles (𝑟𝑖𝑛 & 𝑟𝑜𝑢𝑡) are called pitch radius.  

Let’s assume there is no friction between the wheels and these wheels are rotating with a constant 

angular velocity (no acceleration and no deceleration), and the wheels are rigid bodies. Based on 

this information, we can say power-in would be equal to power-out (the power loss is very little). 

This for most types of gears is true (we have an efficiency of around %98) 

𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 = 𝑃𝑜𝑤𝑒𝑟 𝑜𝑢𝑡 

𝜔𝑖𝑛. 𝑇𝑖𝑛 = −𝜔𝑜𝑢𝑡. 𝑇𝑜𝑢𝑡 

 

rout 

rin 

Angular 

velocity 
Torque 
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Note: This equation wrote as a scalar function because both angular velocity and torque are on the 

plane (moving around the z-axis) and they are going in the same direction.  

 

So, we can write the gear ratio as: 

𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
= −

𝑇𝑜𝑢𝑡

𝑇𝑖𝑛
= 𝑀𝐴 

 

The gear ratio also is named mechanical advantage (MA) and tells you how much force you are 

gaining from your gear system. 

 

Mainly the gear systems are used for these two purposes: 1) Increase/decrease speed 2) 

increase/decrease torque. And when you gain one, you will lose the other (when you gain torque, 

you will lose the angular velocity and if you increase the angular velocity, you will decrease the 

torque) 

There are two ways we can create a system in which you can have the input and output rotating in 

the same direction. One way would be to put the third gear between input and output gears. 

 

The total gear ratio would be: 

𝑅 = (−
𝜔𝑖𝑛

𝜔2
) (−

𝜔2

𝜔𝑜𝑢𝑡
) =

𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
 

You can see the middle gear doesn’t do anything except change the velocity direction. 

In the second method, we don’t need extra gear. In this method, two gears have to be inside of 

each other.  
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In general for gear ratio we will have: 

 

𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
= ±

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛
 

 

−: 𝑓𝑜𝑟 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑓𝑜𝑟 𝑡𝑤𝑜 𝑔𝑒𝑎𝑟𝑠      

+: 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑓𝑜𝑟 𝑡𝑤𝑜 𝑔𝑒𝑎𝑟𝑠    

However, in reality, we cannot work with the sticky gear (there is not such a system that much 

sticky). So, we have to use different types of gear.  

Some general information about gears: 

 Gear teeth: There are many different profiles for teeth. 

 

A) Square shape teeth: This type of teeth doesn’t give a constant velocity ratio and depending 

on contacting point between the teeth and you will have a kind of force oscillation in your 

input/output velocity relation. 
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B) Involute profile: We will work with this type of tooth because this one has nice geometric 

properties that make it very good. There are some other types of teeth that we are not going 

to detail of them. 

 

 Base circle: It is the circle which we create the teeth profile from. The normal to involute 

profile is tangent to the base circle. 

 
 

𝜌: Radius of curvature of a tooth (this varies point by point because the profile is not 

circular) 

 

 The contact line of meshing teeth is constant 

 

The contact point can be changed but always remain on the tangent line between two circles 

(contact line). The force between two teeth always applies on this line and is normal to both teeth. 

The angle between force and velocity is the pressure angle (∅). This angle is constant for gears 

and there are some standard values for them which you can find in catalogs. Both wheels must 

have the same pressure angle and this angle is less than 30° to not waste a lot of force.  

 

𝜌 

𝜌 



ME 3320 Lecture 19 
 

5 
 

 

 

𝑟𝑏1
& 𝑟𝑏2

: 𝐵𝑎𝑠𝑒 𝑟𝑎𝑑𝑖𝑢𝑠  

𝑟𝑝1
& 𝑟𝑝2

: 𝑃𝑖𝑡𝑐ℎ 𝑟𝑎𝑑𝑖𝑢𝑠  

∅: 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑛𝑔𝑙𝑒  

Pitch circle: It is an imaginary sticky circle that can make the same velocity ratio. You can’t 

measure it but it geometrically exists.   
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𝐹 𝑐𝑜𝑠 ∅ . 𝑟𝑝2
= 𝑇𝑜𝑢𝑡  

𝐹 𝑠𝑖𝑛 ∅: A radial force on the output shaft 

So, the involute profile is great, has really good properties, and gives you a constant velocity ratio, 

but creates some reaction forces. 

How do we transmit this force from the gear to the shaft? There are different ways: 

Using keyhole on shaft and gear and key for connection between them. So, we transmit the force 

from the gear to the key and from the key to the shaft. 

 

Or other keyhole shapes (something like multiple keyholes) 

 

Also, you can use press-fit them depending on how big is the torque in the output. 
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Usually, the gear systems are designed to transmit the constant velocity ratio but you can create 

gear systems to do many other things (create dwells, moving in the part of the cycle and not moving 

in part of the cycle, etc.)   

Example: Create a gear system that moves in the first half in one direction (forward) and in the 

second half in the other direction (backward).  

 

 

https://www.youtube.com/watch?v=fmA9Vnu33FY  

 

 

 

 

 

 

𝜔𝑖𝑛 

𝜔𝑜𝑢𝑡 

https://www.youtube.com/watch?v=fmA9Vnu33FY
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Gear Systems (Continue) 

Geometry of Gears 

 

Line of Action: https://www.youtube.com/watch?v=_p6npjPSIbI  

𝑟𝑏1
, 𝑟𝑏2

: Base Radius  

𝑟𝑝1
, 𝑟𝑝2

: Pitch Radius  

𝑐: Center Distance  

∅: Phase Angle  

𝑐𝑜𝑠 ∅ =
𝑟𝑏

𝑟𝑝
          

 Two meshing gears have the same pressure angle 

Gear Ratio   

𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
= ±

𝑟𝑝𝑜𝑢𝑡

𝑟𝑝𝑖𝑛

                  𝑅 = ±

𝑟𝑏𝑜𝑢𝑡
𝑐𝑜𝑠 ∅
𝑟𝑏𝑖𝑛
𝑐𝑜𝑠 ∅

= ±
𝑟𝑏𝑜𝑢𝑡

𝑟𝑏𝑖𝑛

 

Relation between base 

radius and pitch radius  

(Pitch Point) 
Line of Action 

https://www.youtube.com/watch?v=_p6npjPSIbI
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𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
= ±

𝑟𝑝𝑜𝑢𝑡

𝑟𝑝𝑖𝑛

= ±
𝑟𝑏𝑜𝑢𝑡

𝑟𝑏𝑖𝑛

 

 

So, we can calculate the gear ratio as the ratio of the base radius which is unchanged (they are 

geometry construction of our gears). So, if the distance between the gears is a little bit changed (if 

the gears are not completely fit each other), we still have the same gear ratio!  

 

Addendum circle: The teeth of gear theoretically can continue till reaching each other at one point 

but then they become weak. So, based on design parameters, we decide the teeth of the gears cut 

at some point. The cutting circle is called the addendum circle. 

Also, at the connecting point between teeth and circle, we are using fillet to increase the strength. 

 

 

𝑎: 𝐴𝑑𝑑𝑒𝑑𝑢𝑚  

𝑏: 𝐷𝑒𝑑𝑒𝑛𝑑𝑢𝑚  

𝑝: 𝑃𝑖𝑡𝑐ℎ (Circular distance between two teeth) 

𝑝𝑐: 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑃𝑖𝑡𝑐ℎ (Measure at pitch circle) 

𝑝𝑏: 𝐵𝑎𝑠𝑒 𝑃𝑖𝑡𝑐ℎ (Measure at base circle) 

𝑁: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ  

𝑡: 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ (Usually it is equal to the distance between two teeth) 
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Dedendum Circle: Sometimes we develop the involute profile a little bit below the base circle to 

make thicker teeth (and sometimes a little on top of the base circle). In that case, you cannot see 

the base circle. 

𝑝𝑐 & 𝑝𝑏 can be found from the following equations: 

 

𝑝𝑐 =
2𝜋𝑟𝑝

𝑁
           ,            𝑝𝑏 =

2𝜋𝑟𝑏

𝑁
 

 

For two gears to mesh, we need to have: 

1) Same pressure angle (∅)  

2) Same pitch (𝑝𝑐 & 𝑝𝑏) because the gears contact each other at the pitch circle (the tooth from 

one gear have to place between two teeth of the other gear).   

In reality, in the manufacturing process, it is a little bit hard to find 𝑝𝑐 from the above equation. In 

catalogs instead of circular pitch (𝑝𝑐) you will find something called diametral pitch.  

 

US: Diametral Pitch       𝑃𝑑 =
𝑁

𝑑𝑝
 (

𝑡𝑒𝑒𝑡ℎ

𝑖𝑛𝑐ℎ
)        𝑑𝑝 = 2𝑟𝑝            (It is also equal to 𝑃𝑑 =

𝜋

𝑝𝑐
) 

 

International System: Module          𝑚 =
𝑑𝑝

𝑁
  (𝑚𝑚)   

 

In the process of selecting gear for a specific task, first, you have to pick a pressure angle (∅), then 

diametral pitch, and finally the number of teeth from the catalog. The diametral pitch shows you 

how big the teeth are (for more torque, we need bigger teeth). 

 

 

 

 

 

 

 

 

Or sometimes in catalogs  (𝐷. 𝑃.) 

Pitch diameter 
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Example for a gear catalog: 

 

1 

2 

3 
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There is a possibility that two or more teeth of the gears be in contact at the same time. In that 

case, all contact points (pitch points) will be on the “Line of Action” and the motion would be 

smoother but with more friction. The number of teeth in contact at the same time is one of the 

design parameters.  

Note: The pressure angle always remains the same because it is related to the gears circle. 

Note: The formula sheet for a different type of gear will be posted in Moodle. 

Depending on your application, sometimes you need more load to apply to the gear so you can 

design gear with thicker teeth at the connection point to the gear surface (a) and sometimes you 

need more space between two teeth on the gear (because one of the gears is very small compared 

to the other one) and you can get closer to the center of gear (b). In these two examples, we have 

the same gear ratio, same pressure angle, and the same number of teeth, but they have different 

performances when they are meshing to gather. 

 

Undercutting: cutting under the base circle. It is not always a good decision because it makes 

your gear weaker. 

 

For Two Gears to Mesh: 

 Same diametral pitch 

 Same pressure angle 

 Same addendum & dedendum (to make sure they don't hit each other) 

We had: 

𝑟𝑝 =
𝑟𝑏

𝑐𝑜𝑠 ∅
          

𝑝𝑐 =
2𝜋𝑟𝑝

𝑁
 

𝑃𝑑 = 𝐷. 𝑃. =
𝑁

𝑑𝑝
=

𝑁

2𝑟𝑝
          

a b 

Under cutting 
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𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
= ±

𝑟𝑝𝑜𝑢𝑡

𝑟𝑝𝑖𝑛

= ±
𝑟𝑏𝑜𝑢𝑡

𝑟𝑏𝑖𝑛

 

But we cannot measure 𝑟𝑝 & 𝑟𝑏! So, for Gear Ratio, we can write it based on the number of teeth: 

 

𝑅 =

𝑝𝑐𝑜𝑢𝑡
𝑁𝑜𝑢𝑡

2𝜋
𝑝𝑐𝑖𝑛

𝑁𝑖𝑛

2𝜋

= ±
𝑁𝑜𝑢𝑡

𝑁𝑖𝑛
 

 

𝑅 = ±
𝑁𝑜𝑢𝑡

𝑁𝑖𝑛
 

 

So, the ratio of the velocity or the ratio of the torque is the same as the inverted ratio of the number 

of teeth. 

Example: Select two spur gears to have an output angular velocity that is three times the input 

angular velocity. These gears have a pressure angle of ∅ = 20° and a diametral pitch of 𝑃𝑑 = 16. 

In this problem, it is not mentioned about internal or external contact, so we assume two gears 

have an external contact. 

𝜔𝑜𝑢𝑡 = −3 𝜔𝑖𝑛 

𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
= −

𝜔𝑖𝑛

3 𝜔𝑖𝑛
= −

1

3
 

The previous table is for external spur gears, pressure angle of ∅ = 20°, the diametral pitch of 

𝑃𝑑 = 16, and we can find two gears with this ratio from it (there are many tables for different gears 

and different specifications). From this table, we have several options: 

(36 & 12), (60 & 20), (72 & 24), etc. 

Let’s pick (36 & 12). So, 

𝑁𝑖𝑛 = 36 𝑡𝑒𝑒𝑡ℎ       &        𝑁𝑜𝑢𝑡 = 12 𝑡𝑒𝑒𝑡ℎ 

This gear system: 

𝜔𝑜𝑢𝑡 = −3 𝜔𝑖𝑛

𝑇𝑜𝑢𝑡 = −
1

3
 𝑇𝑖𝑛

}          Increase angular velocity (𝜔) & decrease torque (𝑇) 

 

 

(𝑝𝑐𝑖𝑛
= 𝑝𝑐𝑜𝑢𝑡

) same diametral pitch 
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If we have standard gears, we can calculate other parameters: 

1) Addendum: 𝑎 =
1.0

𝑃𝑑
= 0.0625 𝑖𝑛 

2) Dedendum: 𝑏 =
1.25

𝑃𝑑
= 0.078 𝑖𝑛 

3) Pitch Radius:          

 𝑃𝑑 =
𝑁

2𝑟𝑝
         

𝑟𝑝𝑖𝑛
=

𝑁

2𝑃𝑑
=

36

2×16
= 1.125  

𝑟𝑝𝑜𝑢𝑡
=

𝑁

2𝑃𝑑
=

12

2×16
= 0.375   

4) Outside diameter: 

 𝐷𝑎 = 2𝑟𝑝 + 2𝑎           

 𝐷𝑎𝑖𝑛
= 2𝑟𝑝𝑖𝑛

+ 2𝑎𝑖𝑛 = 2 × 1.125 + 2 × 0.0625 = 2.375 

 𝐷𝑎𝑜𝑢𝑡
= 2𝑟𝑝𝑜𝑢𝑡

+ 2𝑎𝑜𝑢𝑡 = 2 × 0.375 + 2 × 0.0625 = 0.875 

 

 

 

 

 

5) Center Distance 

𝐶 = 𝑟𝑝𝑖𝑛
+ 𝑟𝑝𝑜𝑢𝑡

= 1.125 + 0.375 = 1.5 

𝐿 = 2𝑟𝑝𝑖𝑛
+ 2𝑟𝑝𝑜𝑢𝑡

+ 2𝑎 = 2 × (1.125 + 0.375 + 0.0625) = 3.125  (Overall dimension of the system) 

 

 

 

 

 

 

 

𝑟𝑝 

𝑎 

𝐶 

𝐿 
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6) Clearance (at the pitch point) 

𝑐 = 𝑏 − 𝑎 = 0.078 − 0.0625 = 0.0155 
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Gear Systems (Continue) 

Different types of gears: 

1) Spur Gears: Shafts are parallel to each other. Also, the axes of the shafts and teeth are  

parallel 

 

 

𝑅 =
𝜔𝑖𝑛
𝜔𝑜𝑢𝑡

= ±
𝑁𝑜𝑢𝑡
𝑁𝑖𝑛

 

 

2) Helical Gears: Parallel Axes or Non-parallel and Non-intersecting Axes. The teeth are 

at an angle 𝛹 (Helical Angle) with respect to the shaft (shaft is in direction of angular 

velocity). 

                        

 

 

Advantages & disadvantages: Run smoother because contact between teeth of the gears changes 

smoothly, they are stronger because of longer and thicker teeth and if you need the axes of gears 

to be in an angle you have to use helical gears and it is better for higher torque and better for 

smooth operation but it has more friction (axial forces) and slightly less efficient than spur gears.  

 

 

Parallel 

Helical Gears 

Nonparallel & 

Nonintersecting 

Helical Gears 

Drawing 

Drawing 
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Helical Gears, Parallel Axes: 

All the magnitudes and geometry of the helix gear depending on which plane you are looking at. 

We have three different planes: Normal plane, Transverse plane, and Axial plane. The normal 

plane is the same plane we used for the Spur gears and when you manufacture your gear using this 

plane (cut the teeth in the perpendicular direction to the normal plane).  

All the magnitude we calculated before, now can be written in form of axial (a), normal (n), or 

transverse (t). For instance for circular pitch, we will have: axial pitch (𝑃𝑎), normal pitch (𝑃𝑛), and 

transverse pitch (𝑃𝑡). 

 

For circular pitch: 

 𝑐𝑜𝑠 𝛹 =
𝑝𝑛

𝑝𝑡
                𝑝𝑛 = 𝑝𝑡 𝑐𝑜𝑠 𝛹            &              𝑝𝑎 =

𝑝𝑛

𝑠𝑖𝑛 𝛹
  

But in the catalogs, we are using the diametral pitch (𝑃𝑑 =
𝜋

𝑝𝑐
).  

𝑃𝑛 =
𝜋

𝑝𝑛
 

𝑃𝑛 = 𝑃𝑡  𝑐𝑜𝑠 𝛹 

For the rest of them is the same method. In catalogs, they are using the transverse magnitudes. 

Diametral 

Pitch Circular 

Pitch 
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Also, the pressure angle (∅) will be changed with the plane we are using (Note: the pressure angle 

depends on the profile of the teeth and defines the direction of the force). 

∅𝑡: Transverse pressure angle 

∅𝑛: Normal pressure angle 

 

𝑡𝑎𝑛 ∅𝑡 =
𝑡𝑎𝑛 ∅𝑛
𝑐𝑜𝑠 𝛹

 

 

We can use these formulas for parallel helical gears: 

 

For meshing, we need: 

 𝛹1 = −𝛹2 

 Same normal pitch, 𝑃𝑛1 = 𝑃𝑛2 (in this case, because the angles are the same so we will have 

the same transverse pitch) 

 Same pressure angle in the normal plane for both gears (∅𝑛1 = ∅𝑛2) 

 In this type of gear, in addition to radial and tangential force, we will have axial force. 

 

 
That means, we have to put a specific type of bearings to keep the gears inside of the shaft 

and prevent the gears to move along the shafts. Also, we can use two gears of opposite 

hands together (or one gear with teeth in two opposite directions for each half which is 

Side View Top View 
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known as Herringbone gears). So, in this case, you have axial force in one direction and 

another axial force in the other direction and they cancel each other. 

 

 

Helical Gears, Nonparallel, and Nonintersecting Axes: This is not a very common helical gear 

system and is only used for particular tasks (parallel one is more common). 

 

Ʃ (Sigma): Angle between shafts axes 

𝚿𝟏, 𝚿𝟐 : Helical Angles 

Ʃ = 𝚿𝟏 ± 𝚿𝟐 

For meshing, we need: 

 Same normal pitch (𝑃𝑛1 = 𝑃𝑛2) 

 Compatible helix angles, (Ʃ = Ψ1 ± Ψ2) 

 Same pressure angle in the normal plane for both gears (∅𝑛1 = ∅𝑛2) 
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Gear ratio: Can we still use the same formula?  

The number of teeth of the output over the number of teeth of the input gives the gear ratio 

regardless of the geometry. 

Gear ratio for parallel axes: 

 

The velocity of the contact point is the same in the transverse plane: 

𝑣𝑡1 = 𝑣𝑡2   

𝜔1𝑟𝑡1 = 𝜔2𝑟𝑡2 (𝑟𝑡 is the radius in the transverse plane)  

Then gear ratio would be: 

𝑅 =
𝜔1
𝜔2

= ±
𝑟𝑡2
𝑟𝑡1

 

Also, we know  𝑝𝑡 =
2𝜋𝑟𝑡

𝑁
   (𝑝𝑡: circular pitch and 𝑟𝑡 pitch radius) 

𝑟𝑡2

𝑟𝑡1
=

(𝑝𝑡2𝑁2)
2𝜋
⁄

(𝑝𝑡1𝑁1)
2𝜋
⁄

=
𝑝𝑡2𝑁2

𝑝𝑡1𝑁1

𝑝𝑡 =
𝑝𝑛

𝑐𝑜𝑠 𝛹⁄ }
 

 
           

𝑟𝑡2

𝑟𝑡1
=

𝑝𝑛2𝑁2𝑐𝑜𝑠 𝛹1

𝑝𝑛1𝑁1𝑐𝑜𝑠 𝛹2
                               

 

For meshing, we know:  𝒑𝒏𝟏 = 𝒑𝒏𝟐    &   𝛹1 = − 𝛹2, so 𝑐𝑜𝑠 𝛹1 = 𝑐𝑜𝑠 𝛹2 

 

𝑟𝑡2

𝑟𝑡1
=

𝑁2

𝑁1
            𝑅 = ±

𝑟𝑡2

𝑟𝑡1
= ±

𝑁2

𝑁1
                  Proof for the parallel case 
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Gear ratio for nonparallel axes: 

In this case, we cannot define that the tangent velocity will be the same because the axes are at an 

angle with each other but the normal component of the velocity would be the same (𝑣𝑛1 = 𝑣𝑛2). 

 

 

 

𝑅 =
𝜔1
𝜔2

 

 

𝑣𝑛1 = 𝑣𝑛2                    𝑣𝑡1𝑐𝑜𝑠 𝛹1 = 𝑣𝑡2𝑐𝑜𝑠 𝛹2                𝜔𝑡1𝑟𝑡1𝑐𝑜𝑠 𝛹1 = 𝜔𝑡2𝑟𝑡2𝑐𝑜𝑠 𝛹2 

(𝜔𝑡1 = 𝜔1 , 𝜔𝑡2 = 𝜔2)              𝜔1𝑟𝑡1𝑐𝑜𝑠 𝛹1 = 𝜔2𝑟𝑡2𝑐𝑜𝑠 𝛹2 

 

𝑅 =
𝑟𝑡2𝑐𝑜𝑠 𝛹2

𝑟𝑡1𝑐𝑜𝑠 𝛹1
=

(
(𝑝𝑡2𝑁2)

2𝜋
⁄ )𝑐𝑜𝑠 𝛹2

(
(𝑝𝑡1𝑁1)

2𝜋
⁄ )𝑐𝑜𝑠 𝛹1

𝑝𝑡 =
𝑝𝑛

𝑐𝑜𝑠 𝛹⁄ }
 
 

 
 

                    𝑅 =
𝑝𝑛2𝑁2

𝑝𝑛1𝑁1
            

 

For meshing, we know:  𝒑𝒏𝟏 = 𝒑𝒏𝟐                         𝑅 =
𝑁2

𝑁1
                     Proof for nonparallel case 

 

(The gears are not parallel 

so there is no +/- in this 

case) 
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Gear Systems (Continue) 

3) Worm & Worm Gear: This is a special case of helix gear when the helix angle is so big 

and the teeth curls on the wheel. 
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Some of the properties of this type of gear: 

 They are at perpendicular angles (the transverse pitch of gear will equal to the axial pitch 

of the worm) 

 Usually 1 to 3 teeth in the worm 

 We will have high gear ratios (if we have 1-3 teeth on worm and a high number of teeth on 

gear) 

 High friction (sliding velocity along the teeth is higher) 

 Not very efficient (efficiency between 40% to 85%, 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑝𝑜𝑤𝑒𝑟 𝑜𝑢𝑡

𝑝𝑜𝑤𝑒𝑟 𝑖𝑛
× 100)  

 Motion from worm to worm gear only (They are not reversible and work in one direction)  

 

 

 

Lead: Motion of worm per revolution      

𝐿 = 𝑁. 𝑝𝑎    (𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑚 & 𝑝𝑎 = 𝑝𝑖𝑡𝑐ℎ 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑥𝑖𝑎𝑙 𝑝𝑙𝑎𝑛𝑒) 

 

For worm and worm gear to mesh: 

 The axial pitch of the worm is equal to the transverse pitch of the gear (𝑃𝑎𝑊
= 𝑃𝑡𝐺

) 

 The helix angle of the gear has to be the lead angle of the worm (𝜆𝑊 = 𝛹𝐺) 

 The axial velocity of the point on the worm will be equal to the tangent velocity of one 

point on the gear 

Exercise: Proof the gear ratio would be: 𝑅 =
𝜔𝑊

𝜔𝐺
=

𝑁𝐺

𝑁𝑊
 (Use 𝑣𝑎𝑊

= 𝑣𝑡𝐺
). In this case, we don’t 

need ± because the axes are not parallel.  

 

 

 

 

Axial Plane 

𝑝𝑎 

Transvers Plane 
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4) Bevel Gears: Using for Nonparallel and Intersecting Axes 

 

 

Ʃ (𝑠𝑖𝑔𝑚𝑎): Angle between axes. In this case, is 90° but it can be any angle that you want  

𝛾(𝑔𝑎𝑚𝑚𝑎): Angle for each gear cone 

 Ʃ = 𝛾1 + 𝛾2 

 We can have different teeth for these gears (helical teeth or straight teeth or other different 

shapes of teeth) and all the formulas apply here. 

 Magnitudes measured at the outside circle of the cones 

 Gear ratio:  𝑅 =
𝜔1

𝜔2
=

𝑁2

𝑁1
 .In this case, we don’t need ± because the axes are not parallel.  

 

Note: So, you can always use the number of teeth of the gears to find the gear ratio (no matter 

what is the type of the gears). 

 

https://www.youtube.com/watch?v=W3D1IFwMuYc  

𝑟1 

𝑟2 

https://www.youtube.com/watch?v=W3D1IFwMuYc
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Gear Ratio for Gear Trains 

 

We call gear trains when we have several gears arranged either in series or in parallel for purpose 

of creating a single gear ratio. 

 

In general, for gear ratio, we have: 

𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
=

𝑇𝑜𝑢𝑡

𝑇𝑖𝑛
=

𝑁𝑜𝑢𝑡

𝑁𝑖𝑛
 

 

a) Simple gear train: Gears mounted on fixed axes and just one gear on each axis. The gears 

can be any type of gear (not only spur gear) and their axis can be at 90° with each other, as 

long as there is only one gear per axes. 

 

 
 

𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
=

𝜔1

𝜔4
= (

𝜔1

𝜔2
) . (

𝜔2

𝜔3
) . (

𝜔3

𝜔4
) = (−

𝑁2

𝑁1
) . (−

𝑁3

𝑁2
) . (−

𝑁4

𝑁3
) = −

𝑁4

𝑁1
 

 

So, only 1st and last gears count for gear ratio. That means the intermediate gears don't affect the 

value of the gear ratio for a gear train and they only affect the sign of it!  

 

Then why do we use these gear trains? There are different reasons, it can be because we want to 

change the direction of motion or maybe there is a big gap between input and output shafts or if 

the size of input and output gears are very different (one of them very small and the other one is 

very big) which is not good, with adding gears with medium size between them, the speed can 

change gradually.  

 

Note: All of the gears in the above example have to have the same diametral pitch and pressure 

angle, so we can make them mesh two by two. 

 

The general gear ratio formula for simple gear trains:   

 

 𝑅 = (−1)𝑚 𝑁𝑜𝑢𝑡

𝑁𝑖𝑛
  ,   𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑠ℎ𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒𝑠 

𝜔𝑖𝑛 
𝜔𝑜𝑢𝑡 

1 2 3 4 
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b) Compound gear train: Gears are mounted on fixed axes, but we can have more than one 

gear on each axis (per shaft). 

Note: The gears have to rotate with the shaft in general (there are some exceptions). So, if two 

gears are mounted to a shaft that means they have the same angular velocity. 

                          

𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
=

𝜔1

𝜔4
= (

𝜔1

𝜔2
) . (

𝜔2

𝜔3
) . (

𝜔3

𝜔4
) 

Remember that we don’t want to cancel the similar 𝜔 in the above equation, because we only 

know about the relation of the gears two by two (we don’t know what are 𝜔1& 𝜔4)!  

 

𝑅 = (−
𝑁2

𝑁1
) . (1). (−

𝑁4

𝑁3
) =

𝑁2𝑁4

𝑁1𝑁3
 

 

Note: In the above example, gear 1 and 2 (same for gear 3 and 4) have to have the same diametral 

pitch and pressure angle, so we can make them mesh but gears 2 and 3 can be completely different 

(there is no relation between them)! 

 

The general gear ratio formula for compound gear trains:   

 

𝑅 = (−1)𝑚 𝛱 𝑁𝑑𝑟𝑖𝑣𝑒𝑛

𝛱 𝑁𝑑𝑟𝑖𝑣𝑖𝑛𝑔
  ,   𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑠ℎ𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒𝑠  

 

Note: 𝛱 means the product of a series of values. 

 

If this equation is confusing, you can use step by step process between every two gears same as 

the previous example. 

 

 

 

 

 

 

 

 

Kinematic 

Sketch 
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Example: The following gear system is a combination of some helical and bevel gears. A) Find 

the gear ratio of the system. B) Find the output angular velocity when 𝜔𝑖𝑛 = 1800 𝑟𝑝𝑚. 

 

 

𝑁1 = 21  

𝑁2 = 35  

𝑁3 = 23  

𝑁4 = 48  

𝑁5 = 39  

𝑁6 = 40  

𝑁7 = 23  

𝑁8 = 34  

𝑁9 = 40  

𝑁10 = 46  

 

 

A)  

Kinematic sketch: 

 

𝑅 =
𝑁2𝑁4𝑁6𝑁8𝑁10

𝑁1𝑁3𝑁5𝑁7𝑁9
=

35 × 48 × 40 × 34 × 46

21 × 23 × 39 × 23 × 40
= 6.06 

 

Note: In this case, we are not putting +/- because the axes are not parallel (there is no meaning for 

+ or -). We only use +/- for gears with a parallel axis! However, we have to keep track of rotation 

from input to output. 

 

B)  

𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
            𝜔𝑜𝑢𝑡 =

𝜔𝑖𝑛

𝑅
=

1800

6.06
= 296.8 𝑟𝑝𝑚 

 

So, this system reduces the angular velocity and increases the output torque! 
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Gear Systems (Continue) 

Guidelines for Design of Compound Gear Trains:  

 

For a given value of R, 

 

 Iterative process 

 Approximate the number of stages needed. This estimation can be done by the difference 

between the input and output size of gears and the number of teeth for each of them. We 

have some limitations for the number of teeth for two gears in connection and we cannot 

jump from a very small gear to a very big gear (or reverse). And this is one of the reasons 

that in the catalog we have a limitation for the number of teeth for the gears (𝑁𝑚𝑖𝑛, 𝑁𝑚𝑎𝑥). 

So, the maximum gear ratio at a single stage is limited (always 𝑅 < 10).   

𝑅𝑖
𝑛 = 𝑅 

 

For a given 𝑅 and 𝑅𝑖 is your assumption (< 10), and you can calculate 𝑛 (𝑛 is the 1st 

approximation to find the number of stages) 

 Space requirements: Limit gear size (limit in pitch diameter 𝑑𝑝 and that means a limit in 

gear ratio at each stage 𝑅𝑖)  

 𝑁𝑖 have to be an integer number 

 

Example: Design of compound gear train, based on following requirements. 

We want:  

 𝑅 = 12: 1 

 Input/output axes collinear  

 𝐵𝑜𝑥 𝑠𝑖𝑧𝑒 < 5 𝑖𝑛 

 

 

 

 

 

 

For several reasons this system cannot be a single stage, first, the axes have to be collinear and 𝑅 

is too big for a single stage! 

 

Step 1: # of stages: 

This number is small enough that we can assume that we will be able to reach this 𝑅 value with 

two stages. We can use the formula in both ways. We can assume this is the number of stages and 

then find the gear ratio for each stage or we can take some gear ratio for each stage and find the 

number of stages. 
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Let’s start with two stages and find the gear ratio for each stage.  

 

𝑅𝑖
2 = 12 

𝑅𝑖: 𝑇ℎ𝑒 𝑔𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑔𝑒 

 

𝑅𝑖 = 3.5 (𝑏𝑒𝑡𝑤𝑒𝑒𝑛 3 𝑎𝑛𝑑 4) 

 

𝑅1 =
𝑁2

𝑁1
≅ 3.5      𝑅2 =

𝑁4

𝑁3
≅ 3.5 

 

Step 2: Estimate kinematic sketch 

 

 
 

Step 3: Use the equation for 𝑅 and the number of teeth for the gears 

 

𝑅 =
𝑁2𝑁4

𝑁1𝑁3
= 12 

The axes are parallel, so we can apply +/- to the equation. We have two stages, so it will be +. 

 

Step 4: For using catalogs, first we have to select the type of gear (helical gear or spur gear) 

 

Step 5: For Helix gear, select the helix angle, transverse diametral pitch, and normal pressure 

angle. 

 

Step 6: If we don’t have more conditions, we can go to the catalog and select the number of teeth 

for each gear in the way the value for 𝑅 becomes 12 (The gear ratio for each stage should be 

between 3 to 4). This would be the last step and the problem is solved.  

1 

2 3 

4 
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Step 7: In this case, we have more conditions. Based on axes collinear: 

 

𝑟𝑝1
+ 𝑟𝑝2

= 𝑟𝑝3
+ 𝑟𝑝4

 

 

 
 

Because we are using helical gears, for every two connected gears: 

 

𝑃𝑡1
= 𝑃𝑡2

         &       𝑃𝑡3
= 𝑃𝑡4

     (transvers diametral pitch) 
 

∅𝑛1
= ∅𝑛2

     &        ∅𝑛3
= ∅𝑛4

  

 

(The pressure angle can be normal or transverse any of them is in the catalog) 

 

Use relation: 

  

𝑵𝒊

𝟐𝑟𝑝𝑖

= 𝑃𝑡𝑖
 

 

Step 8: Based on size limitation for the box:  

 

Let’s assume gear 2 is bigger than gear 1 and gear 4 is bigger than gear 3 (reduction gear train): 

 

𝑟𝑝1
+ 𝑟𝑝2

+ (𝑟𝑝2
+ 𝑎2) + (𝑟𝑝4

+ 𝑎4) < 5 𝑖𝑛 

 

“𝑎” is an addendum 

 

 

 

𝒓𝒑𝟏
 

𝒓𝒑𝟐
 

𝒓𝒑𝟑
 

𝒓𝒑𝟒
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Select the gears and check the conditions: 

Now we have all equations we need. Let’s start with satisfying the gear ratio condition: 

 

Steps 1-3:  

Let’s preselect the number of teeth for pinions (small gears) and check if we can find the number 

for the big gears. 

 

𝑁1 = 12 

𝑁3 = 12 

 

𝑅 =
𝑁2𝑁4

144
= 12 

 

𝑁2𝑁4 = 1728 

 

Now, you can decompose 1200 in prime factors, and try to find the match number in the catalog 

from a combination of these numbers. 

 

1728 = 26 × 33 

 

For instance 48 and 36: 

24 × 3 = 48 

22 × 32 = 36 

 

  

So, we can check the gear ratios  

 

 

𝑅1 =
𝑁2

𝑁1
=

48

12
= 4      𝑅2 =

𝑁4

𝑁3
=

36

12
= 3   

 

𝑅 = 𝑅1 × 𝑅2 = 4 × 3 = 12 

 

Step 4: 

 

Let’s choose helical gear 

 

Step 5: 

 

Based on the available catalog, let’s select 𝛹 = 45° (it is a very common helix angle) 

𝑃𝑡 = 24  

∅𝑛 = 14 − 1/2°  
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We have to check if such gears are available in the catalog. In this case, we have both 36 and 48 

teeth gears. 

 

Step 6: It is not applied to this case. 

 

Step 7: For collinear axes condition, we need to find the pitch radius of the gears (𝑟𝑝𝑖
) and check 

the following relation between them.  

 

𝑟𝑝1
+ 𝑟𝑝2

= 𝑟𝑝3
+ 𝑟𝑝4

 

 

We can use a different formula for finding 𝑟𝑝𝑖
, but in this case, we have the number of teeth and 

transverse diametral pitch so we can use: 

 
𝑵𝒊

𝟐𝑟𝑝𝑖

= 𝑃𝑡𝑖
                𝑟𝑝𝑖

=
𝑵𝒊

𝟐𝑃𝑡𝑖

 

 

𝑟𝑝1
=

𝑁1

2𝑃𝑡1

=
12

2 × 24
= 0.25 𝑖𝑛 

𝑟𝑝2
=

𝑁2

2𝑃𝑡2

=
48

2 × 24
= 1 𝑖𝑛 

𝑟𝑝3
=

𝑁3

2𝑃𝑡3

=
12

2 × 24
= 0.25 𝑖𝑛 

𝑟𝑝4
=

𝑁4

2𝑃𝑡4

=
36

2 × 24
= 0.75 𝑖𝑛 

 

𝑟𝑝1
+ 𝑟𝑝2

= 0.25 + 1 = 1.25 𝑖𝑛 

𝑟𝑝3
+ 𝑟𝑝4

= 0.25 + 0.75 = 1 𝑖𝑛 

 

𝑟𝑝1
+ 𝑟𝑝2

≠ 𝑟𝑝3
+ 𝑟𝑝4

               They are not collinear (it is not a good design!) 

 
One option is changing the diametral pitch. We can do is selecting different diametral pitches for 

gears 2 and 3. Remember the gears 1 &2 and 3 & 4 two by two have to have the same diametral 

pitch but 2 & 3 can have different diametral pitches! 

 

Let’s change the diametral pitch for gears 3 & 4 (keep 𝑃𝑡1
= 𝑃𝑡2

= 24) 

: 

So, we want  𝑟𝑝3
+ 𝑟𝑝4

= 1.25. Also, we know the gear ratio between gears 3 & 4 is equal to 3.  

𝑟𝑝3
+ 𝑟𝑝4

= 𝑟𝑝3
+ 3𝑟𝑝3

= 4𝑟𝑝3
= 1.25 

𝑟𝑝3
= 0.31       &        𝑟𝑝4

= 0.94 
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Note: We don’t use these values of 𝑟𝑝. These just give us an estimation for selecting the correct 

diametral pitch. 

 

𝑃𝑡4
=

𝑁4

2𝑟𝑝4

=
36

2×0.94
= 19.2                  Let’s take 𝑃𝑡4

= 20 and check the error 

 

In the selected catalog, for 𝑃𝑡4
= 20, unfortunately, we don’t have 𝑁4 = 36 but let’s imagine we 

have it. Then, we will have: 

 

𝑟𝑝1
=

𝑁1

2𝑃𝑡1

=
12

2 × 24
= 0.25 𝑖𝑛 

𝑟𝑝2
=

𝑁2

2𝑃𝑡2

=
48

2 × 24
= 1 𝑖𝑛 

𝑟𝑝3
=

𝑁3

2𝑃𝑡3

=
12

2 × 20
= 0.3 𝑖𝑛 

𝑟𝑝4
=

𝑁4

2𝑃𝑡4

=
36

2 × 20
= 0.9 𝑖𝑛 

 

𝑟𝑝1
+ 𝑟𝑝2

= 0.25 + 1 = 1.25 𝑖𝑛 

𝑟𝑝3
+ 𝑟𝑝4

= 0.3 + 0.9 = 1.2 𝑖𝑛 

 

 

𝑟𝑝1
+ 𝑟𝑝2

≅ 𝑟𝑝3
+ 𝑟𝑝4

         The numbers do not exactly match but are close enough. 

 

This was one strategy. Also, we can repeat the process with different numbers from the beginning. 

 

Next Iteration: 

 

Let’s take these values: 

 

𝑃𝑡1,2
= 10           𝑃𝑡3,4

= 12 

 

𝑁1 = 8  

𝑁3 = 10  

 

Therefore, we will have: 

 

𝑁2𝑁4 = 12 × 8 × 10 = 960 = 26 × 3 × 5 

 

Select closest numbers from the catalog:  

𝑁2 = 28  

𝑁4 = 34  
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𝑅 =
𝑁2𝑁4

𝑁1𝑁3
= 11.9               It is not exactly 12 

 

Then, we can calculate the error: 

 

𝑒𝑟𝑟𝑜𝑟 =
‖𝑅𝑟𝑒𝑎𝑙 − 𝑅𝑑𝑒𝑠𝑖𝑟𝑒𝑑‖

𝑅𝑑𝑒𝑠𝑖𝑟𝑒𝑑
× 100 =

‖11.9 − 12‖

12
× 100 = 0.83% 𝑒𝑟𝑟𝑜𝑟 

 

That is a very small error and negligible.  

 

 

𝑟𝑝1
=

𝑁1

2𝑃𝑡1

=
8

2 × 10
= 0.4 𝑖𝑛 

𝑟𝑝2
=

𝑁2

2𝑃𝑡2

=
28

2 × 10
= 1.4 𝑖𝑛 

𝑟𝑝3
=

𝑁3

2𝑃𝑡3

=
10

2 × 12
= 0.416 𝑖𝑛 

𝑟𝑝4
=

𝑁4

2𝑃𝑡4

=
34

2 × 12
= 1.416 𝑖𝑛 

 

𝑟𝑝1
+ 𝑟𝑝2

= 0.4 + 1.4 = 1.8 𝑖𝑛 

𝑟𝑝3
+ 𝑟𝑝4

= 0.416 + 1.416 = 1.83 𝑖𝑛 

 

𝑟𝑝1
+ 𝑟𝑝2

≅ 𝑟𝑝3
+ 𝑟𝑝4

         The numbers do not exactly match but are close enough.  

 

In this case, if we want the gears to be completely collinear, we can change slightly the center 

distance and the gears will still mesh with the same gear ratio (𝑅) and pressure angle (∅). Then 

there will be a small gap between the teeth of one of the gear sets (for instance gear 3 & 4). That 

cause an increase in the backlash and more space between the gears' teeth.  

 

 
Note: We only want contact in the direction of the force. So, we always want a little bit of backlash 

between gears. That would be good for lubrication of the gears too. But we don’t want too much 

backlash! For instance, if you driving in both directions when you want to change the direction of 

the motion, then teeth hit each other, making noise, vibration, impact, etc. 

 

Backlash 



ME 3320 Lecture 23 
 

9 
 

The formula for backlash: 

 

 
 

𝑡 = ℎ   At the pitch circle (for one gear) 

ℎ𝑝 ≠ 𝑡𝑝  At the pitch circle (for two gears in contact) 

 

𝐵 = ℎ𝑝 − 𝑡𝑝   

To create backlash (𝐵): 

 Decrease the thickness of the tooth (𝑡𝑝), so (𝑡 < ℎ) 

 Increase the distance between centers (Increase from 𝐶 to 𝐶 + ∆𝐶)    

 

 
For this case, the backlash would be: 

 

𝐵 = 2 ∆𝐶 𝑡𝑎𝑛 ∅ 
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Gear Systems (Continue) 

Some other parameters of the gears: These are more analysis parameters (not design parameters)  

 

Contact ratio: The number of teeth in contact at the same time. Because this keeps changing 

(sometimes is one or two, depending on which part of the contact along the teeth you are, so we 

use an average per revolution) 

 

𝑍 = √(𝑟𝑝1
+ 𝑎1)2 − 𝑟𝑏1

2 + √(𝑟𝑝2
+ 𝑎2)2 − 𝑟𝑏2

2 − 𝐶 𝑠𝑖𝑛 ∅ 

 

Contact ratio (number of teeth in contact): 𝑚𝑐 =
𝑍

𝑝𝑏
 

 

𝑝𝑏: Base pitch (at the base circle) 

𝑎: Addendum 

𝑟𝑝: Pitch radius 

𝑟𝑏: Base radius 

𝐶: Center distance 

∅: Pressure angle 

 

 

𝑚𝑐 > 1 , usually 𝑚𝑐 ≅ 1.2 
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Note: If you find the 𝑚𝑐 < 1that is not good. It means on average there are some moments in 

which no teeth from the gears are in contact! For 𝑚𝑐 > 1, we will have a smoother motion because 

that means before one tooth completely loses contact, another tooth is in contact (but not too much 

because then you will increase the friction). 

 

The minimum number of teeth for avoiding interference/undercutting: 

 

Interference: When the gears contact outside of the involute profile. Either the center distance 

has been changed or the teeth are too tall because the addendum is too big. Also, sometimes happen 

when the number of teeth between the pinion and the other gear is very different.  

 

 
Undercutting: It is similar to interference but it’s happened during manufacturing. It is cutting a 

gear inside the base circle. 

 

 
 

Sometimes we are doing that because we need a small pinion and a big gear but this makes the 

teeth very weak at the base. One way to avoid this is not selecting the gears with very different 

numbers of teeth. 

 

𝑁𝑝 =
2𝐾

(1 + 2𝑅) 𝑠𝑖𝑛2∅
 (𝑅 + √𝑅2 + (1 + 2𝑅) 𝑠𝑖𝑛2 ∅) 

 

𝑁𝑝: Number of teeth of the pinion (small gear) 

𝑅 =
𝑁𝐺

𝑁𝑃
   Gear ratio 

∅: Pressure angle  

𝐾 = 1 for standard gears, 𝐾 = 0.8 for stub teeth (𝑎 =
0.8

𝑃𝑑
 , 𝑏 =

1

𝑃𝑑
) 

Minimum number of teeth 

of pinion 
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So, for the minimum number of teeth, when you do gear selection just check that you are not 

selecting too small gear (if not may you have interference) 

a) Planetary gear train: 

This type of gear train can be used in any application that needs a big gear reduction in a small 

space. This system has two degrees of freedom and unlike the common systems with the mobility 

of two that we need two inputs (two motors) and we get one output, in this system we can do 

something different. We can put just one input and split it into two outputs or one input and use 

another input to control the output and many other applications.  

https://www.youtube.com/watch?v=ARd-Om2VyiE  

Planetary gear train: Some of the gears (They may be simple gear trains or compound gear trains) 

are mounted on the rotating shaft.  

 

 
 

In this particular setup, the Sun gear rotates with the shaft when the Ring and Planet gears and 

carrier are rotating collinearly to the shaft but independent. 

 

We can have more than one planet, but it doesn’t change kinematic of system or motion and just 

it is for force distribution purposes. 

 

Note: The planet is free to rotate on the carrier. The planet is displaced by the rotation of the carrier 

but they don’t have the same angular velocity. 

 

Question: What is the total angular velocity of the planet if the planet rotating with the angular 

velocity of 𝜔2 respect to carrier and carrier has the angular velocity of 𝜔𝑐? 

 

𝜔𝑡𝑜𝑡𝑎𝑙_2 = 𝜔2 + 𝜔𝑐 

 

 

 

 

 

Front view Side view 
3 

1 

2 
3 

2 

1 Arm or 

Carrier (c) 

Sun 

Planet 

Planet 

Sun 

Ring 

Ring 

https://www.youtube.com/watch?v=ARd-Om2VyiE
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Question: What is the mobility of this system? 

 

 
n = 5    ,     j = 6   (1, 4, 5, 6: revolute , 2 & 3: gear) ,     𝑓1 = 𝑓4 = 𝑓5 = 𝑓6 = 1       𝑓2 = 𝑓3 = 2 

 

𝑀 = 3(𝑛 − 1) − ∑ (3 − 𝑓𝑖) =  3 × (5 − 1) − 4 × (3 − 1) − 2 × (3 − 2) 𝑗
𝑖=1   

 

𝑀 = 12 − 8 − 2 = 2 

 

It is 2 degree of freedom system. In this case, we can do two things.  

 

 

1) Having 2 inputs and 1 output:  

In this system, we will have four angular velocities: 𝜔1(sun), 𝜔2 (planet), 𝜔3 (ring), 𝜔𝑐 (carrier). 

Between these velocities 𝜔2 is almost useless because the planet is freely rotating and it is hard to 

control and calculate. So, we can assume that as one of our dependent variables. 

 

So, between 𝜔1, 𝜔3, and 𝜔𝑐, we can select two of them as input and find the third one as output. 

 

2) Having 1 input and 2 outputs (This is the way the planetary gear trains are used for differentials): 

Speed is distributed between two outputs according to the force/torque of each output. 
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Compute the gear ratio of the planetary: 

 

 

 
 

We only know how to compute the one type of gear ratio, when we have two gears, meshing 

together and they are on the fixed axes. So, to compute the gear ratio of this system: 

 

1) We will “fix” the carrier (for our calculations). Then that would change to a simple gear 

train case (sun meshing with the planet and planet meshing with ring).  

2) Select input(s) & output(s): Doesn’t matter which one you take as the input/output and this 

is for computing the gear ratio of the whole planetary. let’s take 𝜔𝑖𝑛 = 𝜔𝑠
𝑐⁄  & 𝜔𝑜𝑢𝑡 =

𝜔𝑟
𝑐⁄ . The 𝜔𝑠

𝑐⁄  is the angular velocity of the sun with respect to the carrier and 𝜔𝑟
𝑐⁄  is the 

angular velocity of the ring with respect to the carrier (writing them with respect to the 

carrier because we assumed the carrier is fixed) 

3) Compute R: 𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
=

𝜔𝑠
𝑐⁄

𝜔𝑟
𝑐⁄
            (𝜔𝑠

𝑐⁄ = 𝜔𝑠 − 𝜔𝑐  ,   𝜔𝑟
𝑐⁄ = 𝜔𝑟 − 𝜔𝑐) 

 

𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
=

𝜔𝑠
𝑐⁄

𝜔𝑟
𝑐⁄

= (
𝜔𝑠

𝑐⁄

𝜔𝑝
𝑐⁄

) (
𝜔𝑝

𝑐⁄

𝜔𝑟
𝑐⁄

) = (−
𝑁𝑝

𝑁𝑠
) (

𝑁𝑟

𝑁𝑝
) = −

𝑁𝑟

𝑁𝑠
 

 

Note: That was just one example that showed the methodology (“fix” the carrier) for calculating 

R for either single or compound gear train. If we have a different setup of gear, then we will have 

a different formula for R.  

 

In the general case, we can say the main equation is: 
𝜔𝑠

𝑐⁄

𝜔𝑟
𝑐⁄

=
𝜔𝑠−𝜔𝑐

𝜔𝑟−𝜔𝑐
 . This is one equation for a two-

degree of freedom system (three variables and two of them are independent). So, we will use the 

input/output given in the problem and solve it for the new R based on this R.  

s: sun gear 

p: planet gear 

r: ring gear 

c: carrier 

(In this case) 
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Example: The carrier is the input, “fix” the ring gear (so we will have one input-output system), 

and the sun gear is the output. 

 

𝑅𝑛𝑒𝑤 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
=

𝜔𝑐

𝜔𝑠
 

 

𝜔𝑟 = 0 

 

𝑅 =
𝜔𝑠−𝜔𝑐

𝜔𝑟−𝜔𝑐
=

𝜔𝑠−𝜔𝑐

−𝜔𝑐
             −𝑅𝜔𝑐 = 𝜔𝑠 − 𝜔𝑐               𝜔𝑠 = (1 − 𝑅)𝜔𝑐 

 

 

𝑅𝑛𝑒𝑤 =
𝜔𝑐

(1 − 𝑅)𝜔𝑐
=

1

(1 − 𝑅)
 

 

 

Example: The sun is the input, “fix” the ring gear (we will have one input-output system), and the 

carrier is the output. 

 

𝑅𝑛𝑒𝑤 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
=

𝜔𝑠

𝜔𝑐
 

 

𝜔𝑟 = 0     (for “fix” ring gear) 

 

𝑅 =
𝜔𝑠−𝜔𝑐

𝜔𝑟−𝜔𝑐
=

𝜔𝑠−𝜔𝑐

−𝜔𝑐
             −𝑅𝜔𝑐 = 𝜔𝑠 − 𝜔𝑐               𝜔𝑠 = (1 − 𝑅)𝜔𝑐              

 

𝑅𝑛𝑒𝑤 =
(1 − 𝑅)𝜔𝑐

𝜔𝑐
= (1 − 𝑅) 

 

 

If we don’t “fix” the ring gear, 

 

𝑅 =
𝜔𝑠−𝜔𝑐

𝜔𝑟−𝜔𝑐
            𝑅(𝜔𝑟 − 𝜔𝑐) = 𝜔𝑠 − 𝜔𝑐         

 

𝜔𝑠 = 𝜔𝑟𝑅 + (1 − 𝑅)𝜔𝑐                 

 

Or 

 

𝜔𝑐 =
1

(1−𝑅)
𝜔𝑠 +

−𝑅

1−𝑅
𝜔𝑟         

 

So, in the first case, for the same input, we can have different torques and different velocities for 

each output (for example on the wheels) 

We will have two inputs & one output  

 

We will have one input (sun gear) & two outputs and 

distribute the power and velocity between them. 
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Gear Systems (Continue) 

Example: Compound planetary gear train 

 

 

 
 

𝑁1 = 60  

𝑁2 = 16  

𝑁3 = 24  

𝑁4 = 100  

 

a) What is the Gear Ratio of this planetary? 

b) If Ring (4) is fixed and 𝜔1 = 100 𝑟𝑝𝑚, compute the angular velocity of the carrier (𝜔𝑐). 

 

a) 

Step1: “Fix” the carrier (if the carrier rotates, we don’t know how to calculate other things). After 

that, we only have a compound gear train. Gears 2 and 3 are connected (on the same shaft), so they 

have the same angular velocity. 

Step2: Select your input and your output. The best choices can be sun gear (1) and ring gear (4). 

Either of them can be input or output. Let’s take sun gear (1) as input and ring gear (4) as the 

output. 

𝜔𝑖𝑛 = 𝜔1
𝑐⁄  

𝜔𝑜𝑢𝑡 = 𝜔4
𝑐⁄  

Step3: Compute the gear ratio 

𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
=

𝜔1
𝑐⁄

𝜔4
𝑐⁄

=
𝜔1−𝜔𝑐

𝜔4−𝜔𝑐
= (

𝜔1
𝑐⁄

𝜔2
𝑐⁄

) (
𝜔2

𝑐⁄

𝜔3
𝑐⁄

) (
𝜔3

𝑐⁄

𝜔4
𝑐⁄

) = (−
𝑁2

𝑁1
) (1) (

𝑁4

𝑁3
) = −

𝑁2𝑁4

𝑁1𝑁3
             

1 

3 2 

4 

c 

c 
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𝑅 =
𝜔1 − 𝜔𝑐

𝜔4 − 𝜔𝑐
= −

𝑁2𝑁4

𝑁1𝑁3
= −

16 × 100

60 × 24
= −1.11 

 

b)  

𝜔4 = 0       (Ring fixed) 

𝜔1 = 100 𝑟𝑝𝑚     (input) 

 

𝜔𝑐 =?       (output) 

 

𝑅 =
𝜔1−𝜔𝑐

−𝜔𝑐
             𝜔1 = (1 − 𝑅)𝜔𝑐          𝜔𝑐 =

1

(1−𝑅)
𝜔1 =

1

(1+1.11)
× 100 = 47.37 𝑟𝑝𝑚 

 

 

Note: We can have planetary gear trains with more than one stage 

 

Example: Two stages of planetary gears train 

 

 
 

How to find the stages of a planetary gear train? One way for that is: to start from a point as the 

input and see where the flow of power goes and check if it goes to two different places. For instance 

in this case, if we start from 1 we have two paths. We can go through 1-2-3-4 or 1-2-5. 

 

Stage 1: 1-2-5 

Stage 2: 1-2-3-4     

 

Note: We have to compute one gear ratio for each stage! 

 

For each gear ratio, we will do the same process (fix the carrier, select input, select output, and 

compute the gear train). 

Gear ratio of 

whole planetary  

1 

2 3 

4 

5 

c 

Both are on same 

carrier  
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For stage 1: I will get 1 as the input and 5 as the output: 

 

𝑅1 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
=

𝜔1
𝑐⁄

𝜔5
𝑐⁄

= (
𝜔1

𝑐⁄

𝜔2
𝑐⁄

) (
𝜔2

𝑐⁄

𝜔5
𝑐⁄

) = (−
𝑁2

𝑁1
) (

𝑁5

𝑁2
) = −

𝑁5

𝑁1
 

 

 

For stage 2: I will get 1 as the input and 4 as the output: 

 

𝑅2 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
=

𝜔1
𝑐⁄

𝜔4
𝑐⁄

= (
𝜔1

𝑐⁄

𝜔2
𝑐⁄

) (
𝜔2

𝑐⁄

𝜔3
𝑐⁄

) (
𝜔3

𝑐⁄

𝜔4
𝑐⁄

) = (−
𝑁2

𝑁1
) 1 (−

𝑁4

𝑁3
) =

𝑁2𝑁4

𝑁1𝑁3
 

 

In this problem, the angular velocities that we can control are: 𝜔1, 𝜔4, 𝜔5, 𝜔𝑐 (we don’t care about 

planet gear as we discussed before). Also, we have two equations: 

 

𝜔1 − 𝜔𝑐

𝜔5 − 𝜔𝑐
= −

𝑁5

𝑁1
 

 

𝜔1 − 𝜔𝑐

𝜔4 − 𝜔𝑐
=

𝑁2𝑁4

𝑁1𝑁3
 

 

Four unknowns & two equations, so two degrees of freedom system (same as the single stage). 

 

Planetary Gear Trains with Bevel Gears 

 

We can use the planetary gear train for any type of gear. Here we are explaining the Bevel gear. 

We can use the same equations for any type of gear (Spur, bevel, helical, or worm). 

 

 

Carrier 

1 2 

3 

4 
5 
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How many stages do we have? Two stages  

Stage 1: 1-2-5 

Stage 2: 1-2-3-4 

 

Similar to the previous example and we can use the same methodology. 

 

Differential 

 

It is planetary with bevel gears (with very specific geometry) 
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Simple gear train between 1 and 2 (a little bit reduction before going to differential) 

𝑅𝑝 =
𝑁2

𝑁1
 

For differential, we have carrier (𝜔2), input (𝜔4), output (𝜔5) 

 

 

Note: To calculate the gear ratio, you take the right wheel or left wheel as input or output.  

 

Note: Same as before, for calculating the gear ratio we assume the carrier is fixed (in reality the 

real input is the carrier but for computing the gear ratio we assumed it is fixed). 

 

 

 

 

1 

2 

3 

4 5 

3 

Carrier 

Power from 

Gearbox 

Right Wheel 
Left Wheel 
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Compute the planetary gear ratio: 

 

𝑅 =
𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
=

𝜔4
2⁄

𝜔5
2⁄

=
𝜔4 − 𝜔2

𝜔5 − 𝜔2
= (

𝜔4
2⁄

𝜔3
2⁄

) (
𝜔3

2⁄

𝜔5
2⁄

) = (
𝑁3

𝑁4
) (−

𝑁5

𝑁3
) = −

𝑁5

𝑁4
 

 

That means the gear ratio is equal to the ratio of the number of teeth for the gear of the right wheel 

to the left wheel. For the differential always 𝑁5 = 𝑁4, because we want to transmit the same 

angular velocity to both wheels. 

 

So, for differential we will have:  

 

𝑅 = −1 (The wheels are rotating in opposite directions) 

 

 
𝜔4 − 𝜔2

𝜔5 − 𝜔2
= −1 

 

 

 

𝜔4 − 𝜔2 = −𝜔5 + 𝜔2               𝜔4 + 𝜔5 = 2𝜔2               
𝜔4+𝜔5

2
= 𝜔2    

 

 

Note: So, when the car going in a straight way, 𝜔4 & 𝜔5 are equal but when the car turns, one of 

them becomes bigger than the other one based on 
𝜔4+𝜔5

2
= 𝜔2.  
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Summary of formulas: 

 

Number of teeth: 𝑁 

Pressure angle: ∅ 

Pitch diameter/radius: 𝑑𝑝, 𝑟𝑝 

Diametral pitch (used in some catalogs): 𝑃𝑑 =
𝑁

𝑑𝑝
 [teeth/in] 

Module (used in some other catalogs): 𝑚 =
𝑑𝑝

𝑁
 [mm] 

Circular pitch: 𝑝𝑐 =
𝜋𝑑𝑝

𝑁
 

Base pitch: 𝑝𝑏 =
𝜋𝑑𝑏

𝑁
= 𝑝𝑐𝑐𝑜𝑠 ∅ 

Base diameter: 𝑑𝑏 = 𝑑𝑝 𝑐𝑜𝑠 ∅ 

Center distance: 𝐶 =
𝑑𝑝1+𝑑𝑝2

2
 

For Standard Gears: 

Standard addendum: 𝑎 =
1

𝑃𝑑
 

Standard dedendum: 𝑏 =
1.25

𝑝𝑑
 

Outside diameter: 𝐷𝑜 = 𝑑𝑝 + 2𝑎 

Clearance: 𝑐 = 𝑏 − 𝑎 

Backlash: 𝐵 = ℎ𝑝 − 𝑡𝑝   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


