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Abstract— This research paper discusses a vision system and 

image processing algorithms for an autonomous vehicle to be 

implemented for precision agriculture purposes. This system is 

a part of a larger project, to detect and remove potatoes infected 

by a commonly occurring virus (PVY – potato virus Y). For the 

detection and removal of infected plants, first, an unmanned 

aerial vehicle (UAV) equipped with a hyperspectral camera and 

a high precision GPS, will fly over the potato field collecting 

images of the plants. Using custom image analysis, the GPS 

location of the sick plant is identified and sent to an autonomous 

ground vehicle (AGV). This AGV will then navigate to the target 

location and rogue the infected plant automatically. The RTK 

GPS used here has an error of about 10cm. After the AGV 

reaches the target location the automatic roguing mechanism 

will still need to identify the sick plant. Potato seeds are planted 

at an average distance of about 30 centimeters, but in reality, 

this distance may vary significantly in the field. To positively 

identify the sick plant in real-time, a special image processing 

system was designed to detect and position the rouging arm over 

the center of the sick plant. This system uses an 8 Megapixel Pi 

camera to find the center of the target plant looking down. This 

system needs to work with high accuracy in a potato field where 

changing sunlight and weather conditions would hamper proper 

identification, HSL (hue, saturation, and lightness) format of 

images was used for better color detection. Two methods for 

finding the center of the plant were compared. These were 

compared to positive detection rates for various light levels, a 

variety of leaf colors, and expected location as opposed to actual 

plant location. 
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I. INTRODUCTION  

Diseases always affect the quality and quantity of farmers’ 
products. One of the best ways to minimize loss of production 
in the field is early detection and removal of infected plants. 
[11, 13, 19]. To accurately identify infected plants, we need to 
identify physical manifestations of the disease [12, 27]. 
Detection of sick plants is cumbersome for large fields, but 
computer vision technologies aid in early and fast detection 
using leaf images [12, 1, 5, 2]. 

With recent improvements in the science of robotics and 
autonomous systems, image processing plays a more critical 
role for correct decision making, path planning, obstacle 
avoidance for mobile robots [4, 14]. Image processing is 
especially challenging in a farm. 

Most image processing techniques focus on the size and 
color of objects. Most of them change the picture color of the 
object to gray, black and/or white formats for analysis. While 
loss of contrast, sharpness, shadow, and structure of the color 
images are some of the characteristics of converting a colored 
image to gray images, scientists are working on improving this 
method [20, 25]. However, in a field, based on weather 
conditions, a wide range of illumination of the surface of the 
plant by sunlight creates different levels of shadows and 
changes the lightness of the picture [7, 23]. Also, there is the 
possibility of unexpected objects, like farm equipment which 
might further change the image of the leaves on the farm. Plus, 
the size of the target objects can be different, as fruits and 
vegetables vary in size and shape [26, 22]. 

Image processing could be applied to black and white or 
gray pictures or one could work with color pictures too (Red-
Green-Blue, RGB). The problem with colored images is we 
have to work with three variables which makes it complicated. 
Two other alternatives are converting the picture to HSL (hue, 
saturation, lightness) and HSV (hue, saturation, value) [21, 8, 
18]. 

Using the HSL color space for detection of a range of 
colors, for instance, detection of colors in yarn-dyed fabrics 
[17] or for agricultural purposes (detection of fruits and 
vegetables) can be an excellent choice [16]. MATLAB has a 
user-friendly environment for coding, especially for image 
processing. In [9], a combination of Internet of Things (IoT) 
and Image processing in the field of agriculture was discussed. 

With recent improvements in electronics and 
programming software, a combination of machine vision and 
image processing techniques provides a promising 
implementation for accurate real-time plant detection in the 
field [24, 10]. In the current research, one of the novel methods 
for infected plant detection, using a ground-vehicle’s onboard 
machine vision and image processing techniques is presented 
and discussed. 

In field pf agriculture for detecting of plants in the filed 
there are lots of research using pixel-wise classification. In 
[31] deep convolutional neural networks for semantic 
segmentation of cluttered classes in RGB images was 
analyzed. In [32], a detection system with using a camera 
installed on a mobile field robot for detecting sugar beet plants 
and weeds was studied. In [33] the convolutional neural 
networks (CNNs) was applied to the RGB and near infra-red 
(NIR) images for the crop/weed detection. 

This study is important for improving the protection of 
agricultural products against the viruses. On the other hand in 
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this study, we working on an image processing for detecting 
plants in a wide range of natural light with using a completely 
automatic detection system, This system works based on some 
initial data from GPS system and a novel image processing 
algorithm for finding the center of target plant in different 
situation. 

II. PROJECT OVERVIEW AND CONDITIONS OF THE 

TARGET ENVIRONMENT  

The research topic presented here is part of a larger project 
for the detection and removal of potatoes infected by the virus 
Y autonomously. The complete process for this system is 
presented in Fig. 1. A quadcopter (UAV) equipped with a 
hyperspectral camera and Real-Time Kinematic (RTK) (high 
accuracy GPS) flies over the field taking images. After 
analyzing these images the location of sick plants is identified 
in the field. The GPS coordinates for these target plants are 
then sent to an Autonomous Ground Vehicle (AGV). This 
AGV will be built over an optimized chassis based on a 
prototype chassis designed by Deemyad et al. [3] The AGV 
will be outfitted with an appropriate roguing mechanism [28]. 
This roguing mechanism was selected based on the strengths 
of the grasping mechanisms with a minimum number of 
actuators [29, 30]. Also, this AGV can navigate using an 
onboard obstacle avoidance system [15]. However, once the 
AGV navigates to the specified location, the problem at this 
stage is identifying the exact center point of the sick plant 
(looking down on the plant). This is extremely important to 
extract the sick plant completely from the ground, without 
contaminating nearby ones. But even in the most accurate 
GPS (RTK GPS with just 10cms error), there is always an 
uncertainty involved. Therefore, to solve this problem, once 
the rover reaches the intended location the target plant will be 
positively identified using two cameras, and an image 
processing algorithm to find the center of the sick plant. 

 

Fig. 1. Guiding Autonomous Ground Vehicles (AGV) to the target location 

by sending GPS coordinate from the Unmanned Air Vehicles (UAV). 

Before working on a specific image processing algorithm, 
we needed to collect additional details of the environment 
(potato field) and specifications related to the target object 
(potato plant). To get preliminary environment information 
we visited a local potato field and based on our observations, 
collected three major sets of data. First of all, this system is 
supposed to work in an open area where weather conditions 
are unpredictable. One of the most important and commonly 
occurring change, is in the amount of sunlight during the day. 
This could be due to any number of reasons; for example – 
clouds in the sky, shadows in the field, etc. This would have a 
direct impact on the type of image processing algorithm that 
could be used. The second point that needed consideration, 
relates to the color variations of the target object due to the 

lighting changes and other possible dynamic elements in the 
surroundings. In this project, this system must detect a sick 
potato plant with high accuracy for removal. A potato plant, 
based on age, soil conditions, and weather can have a large 
range of variations of the color green. Some of the other 
common colors in the potato fields which have to be filtered 
are soil color, other reflected light/shadows from irrigation 
equipment, rocks, water on the field, etc. Another factor to 
bear in mind is the shape of the potato field, distance between 
plants, and size of the plants at the time of roguing. Based on 
our observations and measurements from the field visits, a 
simulated model of a potato field was made in SolidWorks 
which was used in future calculations and image processing 
algorithm development. This simulated model is shown in Fig. 
2. As shown, a potato field is fraught with rough terrain and 
deep irrigation ruts. The center to center distance between the 
top points of the two bumps is around 60cm. The plants are 
grown on the top/crests of the bumps and the average distance 
between two plants is around 30cm along the row. The cross 
sign in Fig. 2, shows the target sick plant between eight 
healthy adjacent plants in the potato field. In this research, we 
are considered an ideal condition when the distance between 
plants are almost equal (30cm away from each other) but in 
reality, in a potato field, this distance can be vary and even 
maybe two plants are connected to each other. This would be 
one of the main challenges and can be solve by some changes 
in the extraction mechanism which will be discussed in 
another study. 

 

Fig. 2. Simulated potato field and an average distance between plants in the 

field. 

Usually, PVY can be detected in potato plants very early 
on, in the growth cycle [6] using hyperspectral imaging. This 
is the best time to detect and remove the infected plants from 
the field before the virus spreads to other plants. However, this 
period is usually very short during the crop cycle. To conduct 
tests and to test our algorithms, we planted some potatoes 
indoors. We used the same pattern and shape of the field for 
planting a single row of potatoes. (Fig. 3). 

 

Fig. 3. Planted potatoes indoor with similar pattern in the field. 



III. EQUIPMENT AND APPROPRIATE COLOR SPACE 

A. HSL Color Space 

The major challenge was in developing an algorithm for 
correctly identifying an infected plant, in the large range of 
colors, all within the green domain. Therefore, using a gray or 
black white scale would not be a suitable option here. On the 
other hand, working with color spaces is usually very 
complex. Plus, this system has to work in outdoor conditions, 
again with a wide range for brightness. Between all color 
space models, the HSL would be an appropriateoption. In this 
model, H, S, L are Hue, Saturation, and Lightness 
respectively. As previously discussed, the system needs to 
work in a wide range of Lightness, so we experimented with 
the two remaining components (Hue and Saturation) to find 
the most appropriate map for the target color range.  

The images are taken by cameras are in RGB (Red-Green-
Blue) format which has to be converted to HSL format. For 
this conversion, we will use the following sets of equations 
from [21]: 

𝑅′ = 𝑅 255⁄        ,      𝐺′ = 𝐺 255⁄        ,      𝐵′ = 𝐵 255⁄    (1) 

 

𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥⁡(𝑅′, 𝐺′, 𝐵′)     ,    𝐶𝑚𝑖𝑛 = 𝑚𝑎𝑥⁡(𝑅
′, 𝐺′, 𝐵′)   (2) 

 

∆= 𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛                                                                   
(3) 

 

Lightness: 

𝐿 = (𝐶𝑚𝑎𝑥 + 𝐶𝑚𝑖𝑛)/2                                                                  (4) 

 

Saturation: 

𝑆 = {
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∆= 0⁡⁡
∆

1−|2𝐿−1|
⁡⁡⁡⁡⁡⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∆≠ 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡                                    (5) 

 

Hue: 

𝐻 =

{
 
 

 
 
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0°⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∆= 0⁡⁡⁡

60° × (
𝐺′−𝐵′

∆
𝑚𝑜𝑑6)⁡⁡⁡⁡⁡,⁡⁡⁡⁡⁡𝐶𝑚𝑎𝑥 = 𝑅

′

60° × (
𝐵′−𝑅′

∆
+ 2)⁡⁡⁡⁡⁡,⁡⁡⁡⁡⁡𝐶𝑚𝑎𝑥 = 𝐺′

60° × (
𝑅′−𝐺′

∆
+ 4)⁡⁡⁡⁡⁡,⁡⁡⁡⁡⁡𝐶𝑚𝑎𝑥 = 𝐵′

                      (6) 

 

Where H, S, and L could be any values between 0-1. We 
set up an appropriate range for each of them based on the color 
range we needed to detect, this is further explained in the 
results section. 

B. Equipment 

For testing the developed algorithm, for image processing 
(before final installation onboard the AGV) we performed 
tests in a laboratory setting to ascertain the accuracy of the 
algorithm and make any modifications to the same. The 
cameras were attached to a 1/3 scale prototype model of 
roguing mechanism. While the roguing mechanism itself, was 
attached to an IRB 120 robotic arm with the ability to be 

controlled manually or automatically. In the final field 
operational AGV, two cameras will be used to locate the 
rouging arm in the X and Y directions. The second camera is 
used for redundancy. In the lab tests, a single camera was 
tested. 

A list of all the relevant hardware used is shown in Table 
I and Fig. 4. 

Fig. 5 shows the location of the cameras on the prototype 
of the roguing mechanism. The camera looking down on the 
plant in the Y direction, give us a top view of the plant while 
the second camera would provide the front view of the plant 
to locate the stem. The work described here only deals with 
images acquired by the camera looking down on the plant to 
identify the plant center. 

 
Fig. 4. Required components for image processing and detect the infected 

plant. 

TABLE I.  LIST OF EQUIPMENT. 

# Parts Description Qty 

a Robotic Arm IRB 120 1 

b Micro Controller Raspberry Pi 4 B 1 

c Multi Camera 
Adapter 

Arducam Multi Camera Adapter 
Module V2.1 

1 

d Monitor Raspberry Pi Touchscreen 

Monitor, 7'' Touch Screen 

1 

e 
Cameras 

 
Raspberry Pi Camera Module v2 
with Sony IMX219 8-megapixel 

sensor 

2 

f Ribbon Flex 
Extension Cable 

1 meter 2 

 

 
Fig. 5. The location of two cameras on a prototype of roguing mechanism. 

Camera 1 give us the top view of the plant and Camera 2 give us the front 

view of the plant. 

IV. PROBLEM STATEMENT AND METHODS 

The first problem to overcome, during algorithm 
development, is related to the range of colors of the target 
object. The color of the leaves may vary from one plant to 
another due to the dynamic environment of the field, which 
makes it hard to narrow down the approach needed to identify 



the center. The second problem is related to the amount of 
light during the day and uncertain weather conditions. Both of 
these problems can be solved by defining an appropriate range 
for H, S, and L values. The third problem is related to small 
weeds with the same green color/shade which may be growing 
close to the target plant. These need to be ignored to reduce 
false positives. The issue with the weeds can be resolved by 
defining a threshold for the minimum size the algorithm needs 
to detect for the target object and ignore anything less than this 
size (assume as noise) in our image detection. The fourth 
problem and the most complicated one, is related to detecting 
the target plant between other adjacent plants and find the 
center of this plant to avoid incorrect removal. 

For solving the last problem, let’s take a look at the 
location of the sick plant and adjacent plants from the top. Fig. 
6 shows an area of 60cm×60cm of the field around the sick 
plant. In this figure, the yellow cross in the middle of the 
picture is the target plant (number 5). As mentioned before, 
the AGV will navigate to this location using an RTK GPS with 
an average error of 10cm. This error boundary is shown by a 
red circle in this figure. However, since we are working with 
pixels, using a square shape would be easier. Therefore, we 
will define a square boundary which is shown by the blue 
crosses (numbered 1 to 8) in the figure. These are other 
possible locations that the AGV may reach, due to the RTK 
average position error, and assume them as the center of a 
target plant. For example, the two adjacent plants which are 
on the left and right side of the sick plant with a distance of 
30cm from it. 

The 60cm×60cm square was divided into nine 
40cm×40cm regions as shown in Fig. 6 with yellow, red, and 
black colors. In this way, any of the cross points 1 to 9 would 
be the center of one of these regions. Therefore, regardless of 
the RTK GPS navigates the AGV to the correct location for 
the target plant (number 5) or any number 1-9 (except 5), the 
camera has to search the area of 40cm×40cm around that 
point, find the target plant and detect the center of it. 

 

Fig. 6. The 60cm×60cm area around the target plant in the field and nine 

40cm×40cm sub areas inside of this region. 

As an example, let’s look at one of the possible situations. 
Suppose point number 1 is the location sent from GPS 
onboard the UAV to the AGV, as the center of the target plant. 
We assume the distance between the camera and the ground 
to be fixed. The camera takes a picture from the top with the 
center of point 1 and a frame of 40cm×40cm. This area is 
shown in Figure 7. Now from this image, we have to find the 

location of the target plant i.e. the center of the infected plant 
which is at 5. 

 
Fig. 7. The 40cm×40cm area with the center point number 1 (example). 

In this case, we can use two different algorithms for 
finding the center of the target plant. In this section, we will 
explain both algorithms and in the next section, we can 
compare the result for each of them and select the best one. 

A) In the first algorithm, the whole 40cm×40cm camera 
frame is divided into nine 20cm×20cm sub-frames, as shown 
in Fig 7 with the centers labeled from A to I. Then, the area 
for each of these nine regions will be calculated and the region 
with maximum value for the green shade will be found. 
Finally, the center of that region will be selected as the center 
of the target plant. For instance, in the example above that 
would be I. 

B) In the second algorithm, the entire 40cm×40cm camera 
frame will be analyzed for green areas. Each of the connected 
green areas (one piece) will be selected as one blob. The area 
for each blob will be calculated and the largest blob will be 
selected as the target plant. Finally, the center of the blob 
would be chosen as the center of the target plant. 

V. RESULTS AND DISCUSSION 

As it was discussed in section IV, in this project we focus 
on four main aspects for accurate infected plant detection. 
These are color, light, size of objects, and the center of the 
target plant. The methods and results for each of them are 
presented and discussed in this section. 

A. The Target Color Domain Detection 

To detect the targeted plant and to isolate it from the 
background and other objects in a potato field, we need to find 
an appropriate range of the H, S, and L. After multiple 
iterations, an appropriate range for H, S, and L values in HSL 
format, for most of the possible variations of the color green 
for the leaves of the potato plant, was found. This is presented 
in Table II. 

TABLE II.  ACCEPTABLE RANGE OF PARAMETERS IN THE HSL 

FORMAT. 

HSL Format H S L 

Minimum 0.157 0.1373 0.1176 

Maximum 0.49 1 0.85 

 



To test these ranges and check if we can detect most of the 
green color domain while ignoring all other colors (especially 
colors related to possible objects in a potato field such as 
rocks, soil, etc.), a wide range of green colors was selected. 
The selected colors for testing are presented in Table III, in the 
row labeled Test A. Any of these points which can be detected 
by the algorithm will be replaced with a red color. As you can 
see all of the points in the selected green color domain had 
been detected. On the other hand, in Test B, a variety of other 
colors (except green) was selected and the test was repeated. 
As shown in Table III, none of them were detected. 

To test the results of the algorithm in a real test case, we 
repeated the experiment on leaves of several different plants, 
with various shapes, colors, and sizes. Three samples used for 
this iteration are shown in Fig. 8. None of these leaves belong 
to a potato plant. These were chosen because in the potato 
field, based on the time of the roguing and other field 
conditions the size, shape, and color of potato leaves can be 
different. 

TABLE III.  COLOR DETECTION TEST FOR A WIDE RANGE OF COLORS. 

 

As can be seen, for all three cases the camera did detect 
the leaves of the samples perfectly with minimum error. 

B. The light range 

The second condition to be borne in mind is the amount of 
light in the potato fields. The light intensity can vary based on 
the time of the day or the weather conditions. A proper range 
of H, S, L values (in HSL format) which we found in the 
previous section, affects this section too. Fig. 9 presents four 
levels of brightness, from very bright to a very dark scenarios. 
The results in three conditions; very bright, normal, and dark, 
show the system can detect the plant with high accuracy in 
these tow of the three conditions as expected. In a very dark 
image, it can detect around 50% of the target plant. So, this 
system is not recommended for the very dark condition. 

C. The minimum size range 

In the potato field may small weeds grow close to the 
planted plants. This would cause an error in determining the 
exact center for the target plant. Therefore, we defined a 
minimum sirange for detecting an object, and any value less 
than that would be ignored by the system. In the developed 
code any object with less than 300 pixels will be removed 
from the image. In the example that is presented in Fig. 10, we 
used leaves of the Noble tree. As shown, some portions of it, 

which in close proximity to each other was detected as one 
piece but the rest of it is not detected. 

 

Fig. 8. Three leaves samples with different color, shape, and size to test the 

algorithm. 

 

Fig. 9. Checking the accuracy of the code in various level of brightness A) 

very bright b) normal c) dark d) very dark. 



 

Fig. 10. The blobs with less than 300 pixel will be removed from the image. 

D. Finding the center of target plant 

Two algorithms were presented in the previous section for 
finding the center of the target plant. We tested and evaluated 
both methods with multiple samples. Fig. 11 shows an aerial 
photo of a potato field. The plant in the middle of this photo is 
the target plant. The yellow points show the boundary for 
possible coordinates which can be received from GPS and the 
red point (Num. 5) is the exact center of the target plant. For 
this test, both algorithms were tested for the worst-case 
scenario. The GPS sent incorrect coordinates to the AGV. 
This resulted in the AGV being located somewhere close to 
the discussed boundary, with a maximum distance from the 
correct center point, for example very close (but not exactly) 
to point Num. 9. 

 

 
Fig. 11. Aerial photo from a potato field. 

This situation is presented in Fig. 12. As you can see, this 
is shown an area of 40cm×40cm with the center close to point 
Num. 9. 

 
Fig. 12. The received coordinate from GPS as the center of target plant (close 

to Num. 9) and surrounding. 

1) Results for method A 
In method A, as it was explained before, the camera frame 

will be divided into nine equal 20cm×20cm regions. This 
division is shown in Fig. 13 with center points are marked A 
to I. 

In this method, the green area for each of these regions will 
be calculated and the region with a maximum green area 
would be selected as the target region. Then, the center of that 
region will be selected as the center of the target plant. 

Table IV shows the green parts in each region and the total 
green area in each of them. As it’s shown, the region A with 
6764 pixels has the maximum green area. 

 

Fig. 13. Nine search regions in method A.) and surrounding. 

 

 

 

 

 



TABLE IV.  GREEN AREA FOR EACH REGION IN METHOD A. 

 
 

2) Results for method B 
In method B, the entire image will be searched to find the 

largest blob, and the center of it will be chosen as the center 
of the target plant. 

The final result for both methods are shown in Fig. 14-(B) 
and can be compared to the true center point in Fig. 14-(A). 
As can be seen, both results are close to each other, with 
method B being slightly more accurate. In reality whenever 
one of those 9 points in Fig. 11, is selected as the center of the 
picture, method A will find the center of the target plant with 
100% accuracy. However, if the selected point is in the range 
of 10cm but not exactly one of those points (somewhere 
between two of these points with less than 10cm error), 
method A would have an error between 0 to 5cm. On the other 
hand, results from method B are consistent. The results show 
that most of the time this method will find the center of the 
target plant with high accuracy. 

The accuracy for each of these two methods is compared 
in Table 5. The error for method A, in this example, is because 
point 9 is not selected to be exactly in the center of the picture. 

 

 

Fig. 14. A - Center of target plant; B - The center point detected from  method 

A (yellow star) method B (blue star). 

TABLE V.  ACCEPTABLE RANGE OF PARAMETERS IN THE HSL 

FORMAT. 

 

Center Point 

X _Center 

(Pixel) 

Y_Center 

(Pixel) 

Method A 47.5 47.5 

Method B 63 59 

True Point 63 61 

 

As you can see, the value of X and Y in method B is very 
close to the real center point of the target plant (only 0.4mm 
error in the Y direction). But method A has a larger error 
(around 3cm error in both directions). However, for selecting 
the best method between the two, we repeated the tests many 
times on various samples. The results for ten of them are 
shown in Fig. 15. In the graph green and blue lines shows the 
error for method A and method B for the actual center of the 
plant respectively. The values of these errors are presented in 
the table below the graph. While method A has a large 
fluctuation from 1cm to 5cm error, method B has a constant 
pattern with 1cm to 2cm error which is acceptable. For these 
ten tests which are shown in Fig. 15, the mean and median of 
error values for method A are 2.9cm and 2.8cm respectively 
while these values for method B, are 1.8cm and 1.9cm. So, we 
can say Method B in general is more accurate and reliable. 

 

Fig. 15. Comparison between error of method A method B for ten different 

situations. 

At the end, still there are lots of other challenges remain, such 
as keeping the lens of camera clean in a potato field from the 
dust made by driving vehicle inside of the field and keeping 
the distance between height of camera and a rough terrain like 
potato field. Also, these algorithms has been tested in the lab 
and we have a plan to repeat them for over 100 different cases 
in outside with a natural light and compare our methods with 
other new methods based on machine learning in the next 
work. 

VI. CONCLUSION 

In this paper, an image processing algorithm was designed 
and implemented for the detection of the center point of a 
target plant, infected with PVY in the field. In this project, 
first, a quadcopter detects the infected potato plants in the field 
and sends the GPS coordinate of these target plants to an AGV 
for roguing. This process is currently manual and causes 
significant crop loss every year. In order to reduce detection 
times and reduce crop loss this onboard vision system was 
developed. The system has an cm-level precision RTK GPS 
for navigation. However, even the best GPS systems still has 
an average error of about 10cms. This requires identification 

Y 
X 



of the plant by the rover in real-time. This will help reduce 
false positives. We used HSL color space to improve the 
accuracy of the system for finding the range of green color and 
working in various levels of light. Two different methods for 
plant detection were presented and compared. The algorithms 
developed reduce the error to about 2.8 to 2.9cms.   Finally, 
the most accurate method, algorithm which was based on (fill 
in the method B details here)was selected after thorough 
screening and testing . 
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