

Idaho State University

Mathematics and Statistics

Undergraduate Colloquium

Two Quadrilateral Characteristics

Dr. Robert Fisher Professor Emeritus Idaho State University

ABSTRACT. We introduce the cyclic characteristic κ_c and the orthocentric characteristic κ_o of

a quadrilateral $\Box ABCD$ and discuss their applications. Both κ_c and κ_o are nonnegative real numbers such that $\Box ABCD$ is cyclic (resp. orthocentric) if and only if $\kappa_c = 0$ (resp. $\kappa_o = 0$). Moreover, $\Box ABCD$ is convex (resp. non-convex) if and only if $\kappa_o > \kappa_c$ (resp. $\kappa_o < \kappa_c$). Let O_a , O_b , O_c , and O_d (resp. N_a , N_b , N_c , and N_d) denote the circumcenters (resp. ninepoint centers) of $\triangle BCD$, $\triangle ACD$, $\triangle ABD$, and $\triangle ABC$. When $\Box ABCD$ is neither cyclic nor orthocentric, its circumcenter quadrilateral $\Box O_a O_b O_c O_d$ and nine-point center quadrilateral $\Box N_a N_b N_c N_d$ are similar with $\frac{N_a N_b}{O_a O_b} = \frac{1}{2} \sqrt{\frac{\kappa_o}{\kappa_c}}$. Moreover, the circumcenter quadrilateral of $\Box O_a O_b O_c O_d$ and the nine-point center quadrilateral of $\Box N_a N_b N_c N_d$ are both homothetic to $\Box ABCD$. On the other hand, the circumcenter quadrilateral of $\Box N_a N_b N_c N_d$ and the nine-point center quadrilateral of $\Box O_a O_b O_c O_d$ are homothetic and congruent. The iteration by constructing the circumcenter or nine-point center quadrilaterals produces a family of quadrilaterals which have the same cyclic and orthocentric characteristics as $\Box ABCD$.

For colloquium guests, we'll have some cookies! However, because this talk is in our computer classroom, we request that no beverages be brought into the room.) Tuesday, Oct. 10 4:00 pm PS 324

Zoom Meeting ID: 83918530990