Idaho Numeracy

 Project

Teacher Manual GloSS/IKAN Assessment

Assessment and Analysis Process

GloSS/IKAN Assessment General Information

GloSS: Global Strategy Stage Assessment \& IKAN: The Individual Knowledge Assessment of Numeracy

The GloSS and IKAN assessment package enables you to identify the strategy stage in which students are operating across all knowledge and strategy domains, known as the global strategy stage. It consists of a series of interview strategy questions which can be administered to individual students in a few minutes or less. The series of questions increase in difficulty and include questions in all knowledge and strategy domains. Students move through these questions until they become too difficult for them to answer correctly. Information regarding a student's specific strategy stage is supported by the information provided through the IKAN regarding the student's comprehension of number and quantity. This information supports the acquisition of efficient strategies for computation, and the efficiency of these strategies can be measured by the GloSS assessment. Hence, these two assessments go hand in hand.

GloSS/IKAN Administration (3 times a year)

Teacher Guidance:

1. Administer GloSS Assessment
2. If a student scores with strategy stages 0-3 on the GloSS assessment, the teacher should then administer IKAN Part 1(Counting Interview). If a student achieves strategy stage 4 or higher on the GloSS assessment, the teacher should then administer IKAN Part 2 (Written Assessment).

Strategy Stage Descriptions

LEVEL1	Stage 0 Emergent	Students at the Emergent stage are unable to consistently count a given number of objects because they lack knowledge of counting sequences and/or the ability to match things in one-to-one correspondence.
	Stage 1 One to One Counting	The One to One Counting stage is characterized by students who can count and form a set of objects up to ten but cannot solve simple problems that involve joining and separating sets, like $4+3$.
	Stage 2 Counting From One on Materials	Students at the Counting From One on Materials stage rely on counting physical materials, like their fingers. They count all the objects in both sets to find an answer to a joining or separating of sets problem.
	Stage 3 Counting From One by Imaging	The Counting from One by Imaging stage is characterized by students counting all of the objects. Students at this stage are able to image visual patterns of the objects in their mind and count them.
	Stage 4 Advanced Counting	Students at the Advanced Counting stage understand that the end number in a counting sequence measures the whole set and can relate the addition or subtraction of objects to the forward and backward number sequences by ones, tens, etc.
$\begin{gathered} \text { LEVEL } \\ 2 \end{gathered}$	Stage 5 Early Additive	At the Early Additive stage, students have begun to recognize that numbers are abstract units that can be treated simultaneously as wholes or can be partitioned and recombined. This is called part-whole thinking.
$\begin{gathered} \text { LEVEL } \\ 3 \end{gathered}$	Stage 6 Advanced Additive	Students at the Advanced Additive stage are learning to choose appropriately from a repertoire of part-whole strategies. They see numbers as whole units in themselves but also understand that "nested" within these units is a range of possibilities for subdivision and recombining.
LEVEL 4-5	Stage 7 Advanced Multiplicative	Students at the Advanced Multiplicative stage are learning to choose appropriately from a range of part-whole strategies to solve and estimate the answers to problems involving multiplication and division. These strategies require one or more of the numbers involved in a multiplication or division to be partitioned, manipulated, then recombined.
	Stage 8 Advanced Proportional	Students at the Advanced Proportional stage are learning to select from a repertoire of part-whole strategies to solve and estimate the answers to problems involving fractions, proportions, and ratios. These strategies are based on finding common factors and include strategies for the multiplication of decimals and the calculation of percentages.

Global Strategy Stage: GloSS assessments

Interview forms 1-4

Additional Information

Note: Teachers may copy this form for educational purposes.
This form is available on the nzmaths website, at: http://nzmaths.co.nz/gloss-forms

Contents

PART A: GLOBAL STRATEGY STAGE ASSESSMENTS 1
Introduction 1
Features of the new GloSS interviews 1
THE GLOSS COMPONENTS 2
ADMINISTRATION AND MARKING 2
Planning for the administration 2
Administering the tests 3
Assigning numeracy stages 4
PART B: TECHNICAL INFORMATION 6
Selection of tasks 6
MEASUREMENT OF TASK DIFFICULTY 6
TASK DESCRIPTORS 8
REFERENCES 9
Tables
Table 1 Target Numeracy Framework stages for sets of tasks 2
Table 2 Example of student response to an interview 5
Table 3 Difficulty level of tasks 7
Table 4 Mathematical description of tasks 8

Part A: Global Strategy Stage assessments

Introduction

The Global Strategy Stage (GloSS) assessments are a set of face-to-face interviews designed primarily to assist classroom teachers in determining students' best-fit strategy stages on the Number Framework (Ministry of Education, 2008, pp. 15-17). GloSS is designed for students in Years 1 to 8, but may well be used with secondary students, especially those in Years 9 and 10.
This edition of GloSS retains much of the same feel and style of the previous forms. Many of the tasks come from the original GloSS Forms E, H, I, J and K. New tasks developed by a panel of teachers and mathematics specialists are also included.
This manual and the four new GloSS interview forms have been prepared by staff at the New Zealand Council for Educational Research under contract to the Ministry of Education.

Features of the new GloSS interviews

(1) Four new interviews have been developed (Interview 1 to Interview 4) with 22 tasks in each.
(2) The interviews are designed to be of equivalent overall difficulty. Tasks in different interview forms with the same task number are also of approximately equal difficulty.
(3) The interviews forms are organised into nine sections. Each section focuses on a specific target stage or stages on the Number Framework. Teachers should ask all the questions in a section and then make a decision on whether to continue to the next set of questions based on the student's responses.
(4) To align the interview with the National Standards (Ministry of Education, 2009) Stages 5 to 8 of the Number Framework have each been divided into two substages; for example, Stage 5 is now divided into Early Stage 5 and Stage 5. Table 1 shows how each section is associated with the Number Framework, curriculum and National Standards.
(5) A new recording template is provided. This gives space to record the Number Framework stage that best categorises the student's response on each task and the details of the strategy they employed. At the conclusion of the interview, the recording template allows teachers to record the stage a student is working at for each operational domain.

Table 1 Target Numeracy Framework stages for sets of tasks

Section	Task numbers	Target Numeracy stage/s	Curriculum level	National Standard
$\mathbf{1}$	1	1	Early 1	
$\mathbf{2}$	2	$2-3$	Early1	After one year
$\mathbf{3}$	$3-5$	$4-$	At 1	After two years
		Early 5	Early 2	After three years
$\mathbf{4}$	$6-8$	5	At 2	End of Year 4
$\mathbf{5}$	$9-11$	Early 6	Early 3	End of Year 5
$\mathbf{6}$	$12-14$	6	At 3	End of Year 6
$\mathbf{7}$	$15-17$	Early 7	Early 4	End of Year 7
$\mathbf{8}$	$18-20$	7	At 4	End of Year 8
$\mathbf{9}$	$21-22$	Early 8	Early 5	

The GloSS components

The following components are associated with each interview form:
(1) A brief set of instructions for the administration of the interview.
(2) A list of materials needed for the interview.
(3) An interview schedule, which includes:
a) the student tasks, which are organised into nine sections
b) a scoring guide for each task
c) a decision rule on whether to continue the interview at the end of each section.
(4) A set of student task cards to be shown to the student. Tasks 1 has no associated task card.
(5) A GloSS recording sheet template. A recording sheet is required for each student interview.

Administration and marking

Planning for the administration
(1) Teachers should make themselves familiar with the interview materials and instructions. A brief familiarisation session for staff might be advantageous.
(2) Give students the kind of notice that is normally given for regular assessments. A sense of occasion is to be avoided.
(3) Where possible, the interviews should be administered in a location free from interruption. Try to minimise disruptions during the interview. A notice, "GloSS interview in progress. Please do not disturb" can be hung outside.
(4) Have all of the following: the interview form; the task cards; the materials mentioned on the interview form; and a recording sheet for each student.
(5) For each student, decide the appropriate point to begin the interview. The following principles should help guide this decision:

- Commence the interview with the section targeted just below the Number Framework stage you think the student is at.
- When in doubt opt for a lower starting point. Be willing to move on quickly, or even jump some sections if this level is patently too low.
- If the student finds the first section they are given too hard, go back to a previous section that they can cope with.
- Do not start the interview any later than Section 7.

Administering the tests

(1) Questions are designed so that they can be answered mentally.
(2) Begin the interview at the appropriate starting point (see 5 above). The target Number Framework stage (or stages) is given at the beginning of each set of questions (see Table 1).
(3) Read each task to the student and show them the related task card. For Tasks $1-5$, perform the actions indicated.
(4) Give the student time to answer the task (you may sometimes need to wait for a few minutes). If necessary, prompt the student. For example, ask "How did you work that out?" or "Can you talk me through what you were thinking?"
(5) Allow the student the space to demonstrate higher level strategies. If they use a simpler strategy (e.g., counting) say, "Can you do it another way?" If there is some doubt, continue the interview rather than stop it.
(6) Use the scoring guide associated with each task to allocate a Number Framework stage. Generally the decision is whether they are at or above the stage targeted by the set of questions in the section, or below the target stage. Example: If the target level is Stage 6, responses that are at or above this level are coded as " 6 ", and those that are below it are coded as "E6". Circle the Number Framework Stage on the recording sheet that corresponds with the most sophisticated strategy the student used (even if their numerical answer is not correct).
(7) For each task, make notes on the strategies used in the space entitled "Observations".
(8) Ask all tasks within a section. Generally these are on the two face-to-face pages, and cover the Addition and Subtraction, Multiplication and Division and Proportions and Ratios domains respectively.
(9) Use the decision rule provided at the end of each section to decide whether to stop or continue the interview.

- If the student is rated at the target stage for any of the tasks in that section, then continue the interview, otherwise stop the interview.
- The exception is for Section 3. Here the interview should continue if the student is rated at the target stage (Early 5) for any tasks, or if they are rated at Stage 4 for both Task 3 and Task 4.
- If in any doubt, continue the interview to see if the student can cope with the next section. Students may have used lower level strategies, and more complicated tasks may evoke higher-level strategies.

Assigning numeracy stages

At the completion of an interview, record the highest numeracy stage demonstrated for each operational domain in the spaces provided at the bottom of the recording sheet.

Example of determining a student's numeracy stages

The following page shows a recording sheet for a hypothetical interview.

- The interview terminated at the end of Section 5, as the student used no Early Stage 6 strategies (the target stage for that section).
- The student was rated at Stage 5 in the Addition and Subtraction domain. This was the highest strategy they demonstrated in this domain (observed in Task 6).
- The student was rated as Stage 4 in the Multiplication and Division domain as this was the highest strategy they demonstrated in this domain (observed in Task 4).
- The student was rated as Stages 3-4 in the Proportions and Ratios domain as they could equally share. Note how this utilises the stage indicator in parentheses, and that the Number Framework does not distinguish between Stages 3 and 4 in the Proportions and Ratios domain.

Table 2 Example of student response to an interview

	GLOSS recording sheet - Form 1234 (circle as appropriate)		
	Name; Ted Stu \qquad	$b b s$ Year Level: \qquad 5	Date: $29 / 2 / 2012$ \qquad
Section 1	Addition and Subtraction	Meltiplieation and Difision	Proportions and Ratios
	Task 1 Observaliza:\quad Stage: 0.10		
Section 2	Taxt2 Uservinas Used naterials		
Section 3	Tark 3 $8,9,10, \ldots, 13$	Task 4 $6^{6,12,18}$	
Section 4	T統6 Stager Oheryditu: $\begin{aligned} 36+20 & =56 \\ 56+2 & =58 \end{aligned}$	$\begin{aligned} & \text { Task 7 } \\ & 5,10,15, \ldots \end{aligned}$	Task Obateration: Couldn't do it.
Section 5	Tasty 9 Obervaina:$128+10+10+\ldots 198$$199,201,201,202$	Tath 10 Obseryticn $15,30,45)$	
Section 6	Task 12 Osservation:	Taslk 13 Olearvetion: Stage EG/6	Task 14 Stage: E6/6 Ohervation:
Section 7	Thak 15 Obbervatidal	Task 16 Staget 6/57 Oheswoticn:	
Section 8			
Section 9		Taile 21 Observation:	Task 22 Observation:
	Stage summary: Addition \& Subtraction: \qquad 	Multiplication a Division: \qquad 4 	Proportions \& Ratios: $3 / 4$ \qquad

Part B: Technical information

Selection of tasks

The four interview forms include a total of 88 tasks (22 per form). Many of the tasks came from the original GloSS forms E, H, I, J and K. A few of these have been slightly modified. In addition, a number of new tasks have been used in the interviews.
A total of 120 tasks were trialled in the GloSS Psychometric Study (Neill, Lawes, Robertson, \& Darr 2011). The study located the tasks on the patm scale, a linear measurement scale developed for PAT: Mathematics (Darr, Neill, Stephanou, \& Ferral, 2009). The final 88 tasks were selected from this pool using the following criteria:

- The four interview forms should have approximately the same average difficulty level.
- Groups of tasks within each section (aimed at the same target level) have approximately the same average difficulty level.
- Tasks with the same number should be of approximately the same difficulty level across the forms.
- The tasks within each group of three tasks should relate to the Number Framework stage or stages at which they are targeted.
- Within each form, the tasks should be independent. This means that the mathematical content as well as the context of the tasks should be diverse. This reduces the impact of each task upon subsequent ones.
At times, compromises between these criteria were made. Most notably, within a section, the difficulty level for tasks in the Proportions and Ratios domain was often of greater difficulty than the corresponding tasks in the other two domains. This was because the fit to the Number Framework stages was prioritised over the task difficulty.

Measurement of task difficulty

Table 3 presents the difficulty measures of the GloSS tasks. These measurements are in patm units-the measurement units used in the PAT: Mathematics assessment. The measure for each task is based on data collected during the GloSS Psychometric Study. This study used Rasch modelling techniques to establish a link between the GloSS and PAT: Mathematics assessments.
Some of the task difficulty measures are slightly different from those reported in the GloSS Psychometric Study. This is due to some minor changes made to the marking rubrics used on the GloSS Psychometric Study data so that those rubrics would better reflect the Number Framework. Some further modifications in the rubric for Task 2 may also have a slight overall effect upon the measures.

Table 3 Difficulty level of tasks

Section	Task	Interview 1		Interview 2		Interview 3		Interview 4		Average	
		Difficulty	s.e								
Stages	2	-	-	-	-	-	-	-	-	-	-
		-25.1	1.4	-24.8	1.3	-29.5	1.4	-27.5	1.2	-26.7	0.7
Stage 4- Early stage 5	3	10.5	0.8	8.2	0.8	9.9	0.9	8.0	0.7	9.2	0.4
	4	19.2	0.7	19.2	0.7	18.7	0.7	19.2	0.7	19.1	0.4
	5	26.7	0.9	30.6	0.9	33.4	0.9	33.4	0.9	31.0	0.5
Stage 5	6	29.3	0.9	34.3	0.9	34.0	0.9	30.3	1.1	32.0	0.5
	7	38.2	0.9	38.9	0.9	40.3	0.9	39.4	0.9	39.2	0.5
	8	45.9	0.9	41.1	0.9	39.6	0.9	43.1	0.9	42.4	0.5
Early Stage 6	9	39.4	0.9	39.9	0.9	34.4	1.0	35.0	0.9	37.2	0.5
	10	46.2	0.9	46.2	0.9	49.3	1.0	45.8	0.9	46.9	0.5
	11	46.6	1.1	46.3	0.9	54.5	0.9	54.5	1.1	50.5	0.5
Stage 6	12	49.7	0.9	49.2	1.0	56.2	0.9	53.4	0.9	52.1	0.5
	13	52.8	0.9	53.6	0.9	52.6	1.1	50.1	1.0	52.3	0.5
	14	57.3	1.1	63.4	1.3	56.8	0.9	63.4	1.1	60.2	0.5
Early Stage 7	15	64.8	1.1	63.0	1.1	66.6	1.3	66.0	1.0	65.1	0.6
	16	64.0	1.2	55.7	1.1	62.9	1.0	56.8	1.0	59.9	0.5
	17	62.4	1.1	66.1	1.2	61.9	1.0	63.6	1.1	63.5	0.6
Stage 7	18	78.3	1.5	69.8	1.4	67.5	1.1	67.1	1.2	70.7	0.7
	19	65.4	1.3	72.9	1.3	68.0	1.3	68.9	1.1	68.8	0.6
	20	68.9	1.1	69.4	1.4	71.0	1.1	71.2	1.2	70.1	0.6
Early Stage 8	21	79.5	2.2	83.0	2.0	74.3	1.3	83.6	2.0	80.1	0.9
	22	78.8	1.9	76.5	1.7	77.7	1.6	74.3	1.3	76.8	0.8
	Av.	47.6	0.2	47.7	0.2	47.6	0.2	47.6	0.2		

No data were available for Task 1, as all or virtually all students in the calibration study got these questions correct.

Task descriptors

The following table gives a mathematical description of all 22 tasks in each of the four interview forms. These give the formulation of each problem as it is stated. Students may well have interpreted or transformed the problem to an equivalent problem using inverse operations etc.

Table 4 Mathematical description of tasks

Task	Interview 1	Interview 2	Interview 3	Interview 4
1	Count 8 items	Count 9 items	Count 7 items	Count 6 items
2	$3+6=?$	$2+5=?$	$2+4=?$	$3+4=?$
3	$9+7=$?	$8+6=?$	$8+5=?$	$8+7=?$
4	$6 \times 5=$?	$5 \times 5=$?	$3 \times 6=$?	$5 \times 5=?$
5	$4 \times ?=20$ or $1 / 4$ of $20=?$	$3 \times ?=15$ or $1 / 3$ of $15=?$	$4 \times ?=12$ or $1 / 4$ of $12=?$	$4 \times ?=12$ or $1 / 4$ of $12=?$
6	$57-25=?$	$84-7=?$	$36+?=58$	$49+27=?$
7	$24=2 \times ?$	$30=5 \times ?$	$45=5 \times ?$	$110=10 \times ?$ or $110 \div 10=?$
8	$12 \times 1 / 4=$?	$3 \times 1 / 4=?$	$8: 4=1: ?$	$5=1 / 4$ of ?
9	$?+26=86$	$476-123=?$	$128+74=?$	$147+36=?$
10	$8 \times 6=?$	$88=8 \times ?$ or $88 \div 8=?$	$6 \times 15=?$	$60=5 \times ?$ or $60 \div 5=?$
11	$6: 18=3: ?$	1/2 of 20 c.f. $1 / 4$ of 40	$1 / 2$ of $1 / 4$	1/2 of $1 / 4$
12	$?+148=176$	$82-?=44$	$231-78=?$	$143=89+?$
13	$(40-8) \div 4=?$	$72 \div 8=?$ or $8 \times ?=72$	$6 \times 15=?$	$5 \times 24=?$
14	32:4 = ?:12	$1 / 3=8$ so $2 / 3=?$	3 share 2	$1 / 3=8$ so $2 / 3=?$
15	$4.3+5.15=?$	$23.12-22.63=?$	$5.33-2.9=?$	$0.8+?=1.25$
16	$33 \times 12=?$	$6 \times 36=?$	$81 \div 3=27$ or $3 \times ?=81$	$7 \times 27=?$
17	$3 / 5$ of $20=?$	$3 / 8$ of $24=?$	$1 / 2$ of $3 / 4=$?	1:1/5 = 23:? rounded up
18	$10.6-?=9.69$	$0.885+?=1.5$	$1.845+?=2.3$	$0.67+?=0.9$
19	$114 \div 6=?$ or $114=6 \times ?$	$12 \times ?=180$ or $180 \div 12=?$	$0.075 \times ?=1.5$	$330 \div 15=?$ or $330=15 \times ?$
20	3:2 c.f. 8:6	$24: 16=a: b$ and $a+b=10$	4/5 of $?=40$	$6 \times 3 / 4=?$
21	$0.375 \times ?=4.5$	$0.38 \times 25=?$	$210.9 \times 40=?$	$1 / 5$ of $18.5=$?
22	$32 / 40=x \%$	$8: 6=20: ?$	40:16 = ?:6	$6: 14=?: 21$

References

Darr, C., Neill, A., Stephanou, A., \& Ferral, H. (2009). Progressive Achievement Test: Mathematics —Teacher manual (2nd ed.). Wellington: NZCER Press.

Ministry of Education. (2008). Numeracy Professional Development Projects: Book 1: The Number Framework: Revised edition 2007. Wellington: Ministry of Education. Available at: http://nzmaths.co.nz/sites/default/files/Numeracy/2008numPDFs/NumBk1.pdf
Ministry of Education. (2009). Mathematics standards for years 1-8. Wellington: Author.
Neill, A., Lawes, E., Robertson, S., \& Darr, C. (2011). GloSS psychometric study: Report to the Ministry of Education. Wellington: Ministry of Education.

GloSS recording sheet-Interview form: $1 \begin{array}{lllll} & 2 & 3 & 4 & \text { (circle as appropriate) }\end{array}$

Name:	Year level:	Date:
Addition and Subtraction	Multiplication and Division	Proportions and Ratios
Task 1 Stage: $0 / 1$ Observation:		
Task 2 Stage: 1/2/3/4 Observation:		
Task 3 Stage: $3 / 4 / E 5$ Observation:	Task 4 Observation: \quad Stage: $3 / 4 /$ E5	Task 5 Observation:
Task 6 Stage: E5/5 Observation:	Task 7 \quad Stage: E5/5 Observation:	Task 8 Observation: \quad Stage: E5/5
Task 9 Observation: \quad Stage: 5/E6	Task 10 \quad Stage: 5/E6 Observation:	Task 11 \quad Stage: 5/E6 Observation:
Task $12 \quad$ Stage: E6 / 6 Observation:	Task 13 \quad Stage: E6 / 6 Observation:	Task 14 \quad Stage: E6/6 Observation:
Task 15 Stage: 6/E7 Observation:	Task 16 \quad Stage: 6/E7 Observation:	Task 17 Stage: 6/E7 Observation:
Task 18 Stage: E7/7 Observation:	Task 19 \quad Stage: E7/7 Observation:	Task 20 Stage: E7/7 Observation:
	Task 21 \quad Stage: 7/E8 Observation:	Task 22 \quad Stage: 7/E8 Observation:

Stage summary:

Addition \& Subtraction: \qquad Multiplication \& Division: \qquad Proportions \& Ratios: \qquad
For each domain, highlight the largest stage number circled in positions b and c of "Stage a/b" or "Stage a/b/c".

GloSS Continuum of Strategy Stage Expectations

End of Kindergarten Mathematics Strategy Expectations

Stage 0 EM	Stage 1 1-1	Stage 2 CA	Stage 3 CAI	Stage 4 AC	Stage 5 EA	Stage 6 AA	Stage 7 AM	Stage 8 AP
At Risk	Cause for Concern		Achieving at or above expectations			High Achievers		

End of $1^{\text {st }}$ Grade Mathematics Strategy Expectations

Stage 0 EM	Stage 1 1-1	Stage 2 CA	Stage 3 CAI	Stage 4 AC	Stage 5 EA	Stage 6 AA	Stage 7 AM	Stage 8 AP
At Risk		Cause for Concern		Achieving at or above expectations			igh evers	

End of $2^{\text {nd }}$ Grade Mathematics Strategy Expectations

Stage 0 EM	Stage 1 1-1	Stage 2 CA	Stage 3 CAI	Stage 4 AC	Stage 5 EA	Stage 6 AA	Stage 7 AM	Stage 8 AP
At Risk			Cause for Concern		Achieving at or aboveexpectations $\leftrightarrows \begin{gathered}\text { High } \\ \text { Achievers }\end{gathered}$			

End of $3^{\text {rd }}$ Grade Mathematics Strategy Expectations

Stage 0 EM	Stage 1 1-1	Stage 2 CA	Stage 3 CAI	Stage 4 AC	Stage 5 EA	Stage 6 AA	Stage 7 AM	Stage 8 AP
At RiskCause for ConcernAchieving at or above expectations\quadHigh Achievers								

End of $4^{\text {th }}$ Grade Mathematics Strategy Expectations

Stage 0 EM	Stage 1 1-1	Stage 2 CA	Stage 3 CAI	Stage 4 AC	Stage 5 EA	Stage 6 AA	Stage 7 AM	Stage 8 AP
At Risk				Cause for Concern		Achieving at or above expectations		High Achiever

End of $5^{\text {th }}$ Grade Mathematics Strategy Expectations

Stage 0 EM	Stage 1 1-1	Stage 2 CA	Stage 3 CAI	Stage 4 AC	Stage 5 EA	Stage 6 AA	Stage 7 AM	$\begin{gathered} \text { Stage } 8 \\ \text { AP } \end{gathered}$
At Risk					Cause for Concern			

End of $6{ }^{\text {th }}$ Grade Mathematics Strategy Expectations

Stage 0 EM	Stage 1 1-1	Stage 2 CA	Stage 3 CAI	Stage 4 AC	Stage 5 EA	Stage 6 AA	Stage 7 AM	Stage 8 AP
At RiskCause for Concern\quadAchieving at or above expectationsHigh								

End of $7^{\text {th }}$ Grade Mathematics Strategy Expectations
$\xrightarrow[{\begin{array}{c|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Stage 0 } \\ \text { EM }\end{array} & \begin{array}{c}\text { Stage 1 } \\ 1-1\end{array} & \begin{array}{c}\text { Stage 2 } \\ \text { CA }\end{array} & \begin{array}{c}\text { Stage 3 } \\ \text { CAI }\end{array} & \begin{array}{c}\text { Stage 4 } \\ \text { AC }\end{array} & \begin{array}{c}\text { Stage 5 } \\ \text { EA }\end{array} & \begin{array}{c}\text { Stage 6 } \\ \text { AA }\end{array} & \begin{array}{c}\text { Stage 7 } \\ \text { AM }\end{array} & \begin{array}{c}\text { Stage 8 } \\ \text { AP }\end{array} \\ \hline\end{array} \xrightarrow[\begin{array}{c}\text { Cause for } \\ \text { Concern }\end{array}]{\begin{array}{c}\text { Achieving at } \\ \text { or above } \\ \text { expectations }\end{array}}}]{ }$

Overview of Expectations

The shaded stages in the diagrams shown on the continuum are an indication of the expected levels of achievement. These expectations have been aligned to the expectations in the Common Core State Standards. The goal is for the majority of students to be working within the designated strategy stage, with most of the accompanying knowledge known. Students should also be ready to work at the next stage. A range of achievement is normal and expected at each grade level. These expectations, and the indications of when to consider students to be "At Risk", "Cause for Concern", or "High Achievers" are a guide only. They are intended to assist principals and teachers in setting high, yet attainable, expectations, and develop teaching and learning plans for all students at each grade level in their school.

Students rated as "At Risk" are those who are sufficiently below expectations that their future learning in mathematics is in jeopardy. Students rated "at risk" require special teaching, modified classroom programs and extra support to continue their development and maintain positive attitudes. These students are in need of more intense interventions on the Response to Intervention Pyramid (i.e. Tier 3 or specialized Tier 4). The support required is likely to be beyond what can be reasonably expected from their regular classroom teacher alone.

Students rated as "Cause for Concern" are those who are below expectations, although at a stage where is it reasonable to expect regular classroom teachers to be able to move them to the expected stage. These students may need interventions within Tier 2 of the Response to Intervention Pyramid.
"High achievers" are those students who are sufficiently above expectations that they may require special teaching, modified classroom programs and extra support to continue their development and maintain positive attitudes. The support required could be beyond what can be reasonably expected from the classroom teacher alone. Their needs may be addressed through advanced content and accelerated learning plans for enrichment.
\qquad

GloSS recording sheet - Interview Form: 123 (circle as appropriate)

Name: \qquad Grade: \qquad Date: \qquad
Stage summary:
Addition \& Subtraction: \qquad Multiplication \& Division: \qquad Proportions \& Ratios: \qquad
For each domain, highlight the largest stage number circled in positions b and cof "Stage a/b" or "Stage a/b/c".
Addition and Subtraction

Task 1 Observation:	Stage: 0 / 1				
Task 2 Observation:	Stage: 1/2-3/4				
Task 3 Observation:	Stage: 3 / 4 / E5	Task 4 Observation:	Stage: 3 / 4 / E5	Task 5 Observation:	Stage: 4 / E5
Task 6 Observation:	Stage: E5 / 5	Task 7 Observation:	Stage: E5 / 5	Task 8 Observation:	Stage: E5 / 5
Task 9 Observation:	Stage: 5 / E6	Task 10 Observation:	Stage: 5 / E6	Task 11 Observation:	Stage: 5 / E6
Task 12 Observation:	Stage: E6 / 6	Task 13 Observation:	Stage: E6 / 6	Task 14 Observation:	Stage: E6 / 6
Task 15 Observation:	Stage: 6 / E7	Task 16 Observation:	Stage: 6 / E7	Task 17 Observation:	Stage: 6 / E7
Task 18 Observation:	Stage: E7 / 7	Task 19 Observation:	Stage: E7 / 7	Task 20 Observation:	Stage: E7/7
		Task 21 Observation	Stage: 7 / E8	Task 22 Observation:	Stage: 7 / E8

A
MINISTRY OFEDUCATION
Te Tāhuhu o te Mātauranga

GloSS INTERVIEW 1

TASK 1

ACTION: Place 8 counters of the same colour on the table.
SAY: How many counters are there?

Stage	Strategy observed
0	Student cannot count 8 objects
1	Correctly counts the 8 objects

DECISION: If " 1 " is circled in Task 1, CONTINUE the interview.
If " 0 " is circled, rate the student at Stage 0 and STOP the interview.

TASK 2

SAY: Please hold out your hands for me.
SAY: Here are 3 counters.
SAY: Here are another 6 counters.
SAY: How many counters have you got altogether?

ACTION: Place 3 counters in the student's hand. ACTION: Place 6 counters in their other hand.
ACTION: Close the student's hands to encourage imaging.
ACTION: Allow the student to open their hands if they find imaging difficult.

Stage	Strategy observed
1	Cannot solve the addition problem (Stage 1)
$2-3$	Physically counts all the objects from 1 on materials (Stage 2) Correctly counts all the items from 1 by imaging (Stage 3)
4	Counts on e.g., 4, 5, 6, 7, 8, 9 or 7, 8, 9 Knows 3 + 6

DECISION: If either " $2-3$ " or " 4 " are circled in Task 2, CONTINUE the interview. If " 1 " is circled, STOP the interview. If in any doubt, CONTINUE the interview.

INTERVIEW 1 TASK 2

$3+6=\square$

INTERVIEW 1 TASK 3

$9+7=\square$

TASK 3

ACTION: Place 9 counters under a card then place 7 under another card.
SAY: Here are 9 counters, and here are 7 counters.
How many counters are there altogether?

Stage	Strategy observed
3	Cannot solve the problem (After removing the cards-Stage 1) Counts all objects from 1 on materials (Stage 2) e.g., 1, 2, 3, ... 16 Counts all objects from 1 by imaging (Stage 3) e.g., $1,2,3, \ldots, 16$
4	Counts on (Stage 4) e.g., 10, 11, 12, .., 15, 16 or 8, 9, 10, .., 15, 16
Early 5 or higher	Uses a part-whole strategy e.g., - Making to ten e.g., $9+1=10 ; 10+6=16$ - Doubling with compensation e.g., $7+7=14 ; 14+2=16$ or $8+8=16$ or $9+9=18 ; 18-2=16$ - Addition fact e.g., $9+7=16$

TASK 4

ACTION: Sweep one row with your finger.
ACTION: Point to each row one by one.

SAY: There are 5 cups in each row.
SAY: There are 6 rows of cups.
SAY: How many cups are there altogether?

Stage	Strategy observed
3	Cannot solve the problem Counts all objects from 1 on materials (Stage 2) e.g., 1, 2, 3, 4, 5, 6, $\ldots, 30$ Counts all objects from 1 by imaging (Stage 3) e.g., 1, 2, 3, 4, 5, 6, $\ldots, \mathbf{3 0}$
4	Skip counting (Stage 4) e.g., 5, 10, 15, 20, 25, 30 [or 6, 12, 18, 24, 30]
Early 5	Uses an additive or multiplicative strategy e.g.,
or higher	- Repeat addition e.g., $5+5+5+5+5+5=30$ or $5+5=10 ; 10+5=15 ; \ldots ; 25+5=30$
	- Multiplication strategies e.g., $4 \times 5=20 ; 20+5+5=30$
	- Multiplication fact e.g., $6 \times 5=30$

There are 5 cups in each row. There are 6 rows of cups. How many cups are there altogether?

INTERVIEW 1 TASK 5

You have 20 jellybeans.
Each quarter of the cake should have the same number of jellybeans on it.

How many jellybeans go on each quarter of the cake?

TASK 5

ACTION: Provide 20 counters (jellybeans).
Allow the student access to these counters if necessary.
SAY: You have 20 jellybeans.
Each quarter of the cake should have the same number of
jellybeans on it.
How many jellybeans go on each quarter of the cake?
Note: Say "fourth" instead of "quarter" if this is more familiar to your student.

Stage	Strategy observed
$2-4$	Cannot solve the problem
	Equally shares the beans, on materials or by imaging (Stage 2-4)
Early 5	Uses an additive or multiplicative strategy e.g.,
or higher	- Additive partitioning e.g., $10+10=20 ;(5+5)+(5+5)=20$ Multiplication strategy e.g., $5 \times 2=10 ; 10 \times 2=20$

DECISION: If any "E5" are circled in Tasks $\mathbf{3 , 4} \mathbf{4}$ or 5 , or if the " 4 s " are circled in both Task $\mathbf{3}$ and Task 4, CONTINUE the interview.

Otherwise STOP the interview. If in any doubt, CONTINUE the interview.

TASK 6

SAY: Tamati had 57 model dinosaurs. He gives 25 to his cousin Alice. How many does he have left?

How many does he have left?

Stage	Strategy observed
Early 5	Cannot solve the problem or Uses an earlier numeracy stage
	Counting on or Counting back (Stage 4) e.g., 26, 27, $\ldots, 57$ or $56,55, \ldots, 25$
	Skip counting in tens and ones (Stage 4) e.g., [57] 47, 37, 36, 35, 34, 33, 32
	Repeat addition in tens and ones (Stage E5) e.g.,
	$57-10=47 ; 47-10=37 ; 37-5=32$ or
	$25+10=35 ; 35+10=45 ; 45+10=55 ; 55+2=57 ; 30+2=32$
	Mix of counting and part-whole strategies (Stage E5) e.g.,
	$25+5=30 ; 30+10=40 ; 40+10=50 ; 51,52, \ldots, 56,57$

Tamati had 57 model dinosaurs. He gives 25 to his cousin Alice.

How many does he have left?

INTERVIEW 1 TASK 7
Malcolm has 24 pegs.
He uses 2 pegs to hang out each piece of clothing.

How many pieces of clothing can he hang out?

TASK 7

SAY: Malcolm has 24 pegs.
He uses 2 pegs to hang out each piece of clothing.
How many pieces of clothing can he hang out?

Stage	Strategy observed
Early 5	Cannot solve the problem or Uses an earlier numeracy stage
	Skip counting (Stage 4) e.g., $2,4,6, \ldots, 24$ Repeated addition (Stage E5) e.g., $2+2+2+\ldots+2=24$ 5 or higher
	Uses an additive or multiplicative strategy e.g.,
	- Doubling additively e.g., $2+2=4 ; 4+4=8 ; 8+8+8=24 ; 4+4+4=12$
	- Derive from multiplication facts e.g., $10 \times 2=20 ; 2 \times 2=4 ; 10+2=12$
	- Multiplication or division facts e.g., $12 \times 2=24$ or $24 \div 2=12$

TASK 8

SAY: Alex and his friends ate 12 slices of pizza.
Each slice was one-quarter of a pizza.
How many pizzas did they eat?
Note: Say "fourth" instead of "quarter" if this is more familiar to your student.

Stage	Strategy observed
Early 5	Cannot solve the problem or Uses an earlier numeracy stage Counting strategy (Stage E5) e.g., $\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{4}{4}$ (one whole), $\frac{5}{4}, \ldots, \frac{11}{4}, \frac{12}{4}$ (three wholes)
5	Uses a proportional approach e.g., or higher - Addition strategies e.g., 4 pieces is 1 pizza; $4+4+4=12$ so the answer is 3 - Rate strategies e.g., 4 quarters is 1 pizza, 8 quarters is 2,12 quarters is 3 - Multiplication facts e.g., $4 \times 3=12$ or $12 \div 4=3$

DECISION: If any " 5 " are circled in Tasks $\mathbf{6 , 7} \mathbf{7}$ or $\mathbf{8}$, CONTINUE the interview. If only "E5" are circled, STOP the interview. If in any doubt, CONTINUE the interview.

Alex and his friends ate 12 slices of pizza.
Each slice was one-quarter ($\frac{1}{4}$) of a pizza.

How many pizzas did they eat?

INTERVIEW 1 TASK 9

Jodie had some pens.
She was given another 26 pens and she now has 86 altogether.

How many pens did she have in the beginning?

TASK 9

Interview lias

Jodie had some pens.
She was give
86 altogether

Stage	Strategy observed
5	Cannot solve the problem or Uses an earlier numeracy stage Skip counting in tens (Stage 4) e.g., [26] 36, 46, 56, 66, 76, 86 Repeat addition in tens (Stage E5) e.g., $26+10+10+10+10+10+10=86$
Early 6 or higher	Uses a part-whole strategy e.g., - Place value partitioning e.g., $(80-20)+(6-6)=60+0=60$ - Addition in parts (with reversibility) e.g., $26+60=86$ or $86-26=60$

TASK 10

SAY: Zac has 8 packs of drink. Each pack has 6 cans. How many cans is that altogether?

How many cans is that altogether?

Stage	Strategy observed
5	Cannot solve the problem or Uses an earlier numeracy stage Uses an additive strategy e.g., - Skip counting (Stage 4) e.g., 6, 12, 18, 24, ..., 48 [or 8, 16, 24, 32, 40, 48] - Repeated addition (Stage E5) e.g., $6+6+6+\ldots+6$ [or $8+8+8+\ldots+8]$ - Doubling additively (Stage 5) e.g., $6+6=12 ; 12+12=24 ; 24+24=48$
Early 6 or higher	Uses a multiplicative strategy e.g., - Derives from multiplication facts e.g., $8 \times 5=40 ; 40+8=48$ - Multiplication facts e.g., $8 \times 6=48$

Zac has 8 packs of drink. Each pack has 6 cans.

How many cans is that altogether?

INTERVIEW 1 TASK 11

Ruka picks 6 boxes of raspberries in 18 minutes.

How long does Ruka take to pick 3 boxes?

TASK 11

SAY: Ruka picks 6 boxes of raspberries in 18 minutes. How long does Ruka take to pick 3 boxes?
"mampax

How long does Ruka take to pick 3 boxes?

Stage	Strategy observed
5	Cannot solve the problem or Uses an earlier numeracy stage Uses additive strategies only (Stage 5) e.g., $6+6+6=18$ so 3 minutes per box; $3+3+3=9$
Early 6 or higher	Uses a mix of additive and multiplicative strategies e.g., Uses multiplicative strategies e.g., $3 \times 6=18$ so 3 minutes per box; $3+3+3=9$ Equate fraction of boxes to fraction of time e.g., $\frac{3}{6}=\frac{1}{2} ; \frac{1}{2}$ of $18=9$

DECISION: If any "E6" are circled in Tasks 9, 10 or 11, CONTINUE the interview.
If only " 5 " are circled, STOP the interview. If in any doubt, CONTINUE the interview.

TASK 12

SAY: Tana got an ipod with some songs on it.
He downloaded another 148 songs and he now has 176 songs in total.
How many songs were on his ipod when he first got it?

Stage	Strategy observed
Early 6	Cannot solve the problem or Uses an earlier numeracy stage Mix of counting and part-whole strategies (Stage E5) e.g., [148] 158, 168; $168+2=170 ; 170+6=176 ; 20+2+6$ Attempts part-whole strategy with error (Stage 5) e.g., $176-150=26 ; 26-2=24$ (compensates in the wrong direction)
6 or higher	Uses a part-whole strategy e.g., - Place value partitioning e.g., $(100-100)+(70-40)+(6-8)=30-2=28$ - Adding on in parts e.g., $148+20=168 ; 168+8=176 ; 20+8=28$ or $176-20=156 ; 156-8=148 ; 20+8=28$ - Rounding and compensation e.g., $148+30-2=176 ; 30-2=28$ - Making to tens and compensation e.g., $148+2=150 ; 150+20=170$; $170+6=176 ; 2+20+6=28$

Tana got an ipod with some songs on it. He downloaded another 148 songs and he now has 176 songs in total.

How many songs were on his ipod when he first got it?

INTERVIEW 1 TASK 13

There are 40 small squares in the chocolate block.

How many rows are hidden under the wrapping?

TASK 13

SAY: There are 40 small squares in the chocolate block. How many rows are hidden under the wrapping? If the student does not understand that the question is asking for the number of rows, explain this to them.

How many rows are hidden under the wrapping?

Stage	Strategy observed
Early 6	Cannot solve the problem or Uses an earlier numeracy stage Uses an additive strategy (Stage 5) e.g., - Doubling additively e.g., $4+4=8 ; 8+8=16 ; 16+16=32 ; 4+4=8$
6 or higher	Uses a multiplicative strategy e.g., - Derived from basic fact e.g., $10 \times 4=40$ so $8 \times 4=32$ so the answer is 8 or $10 \times 4=40$ so there are $10-2=8$ - Multiplication facts e.g., $40-8=32$ and $32 \div 4=8$ (or $8 \times 4=32$)

TASK 14

SAY: Hanni uses 32 carrots to fill 4 bags.
How many carrots does he need to fill 12 bags?

Stage	Strategy observed
Early 6	Cannot solve the problem or Uses an earlier numeracy stage Uses an additive strategy (Stage 5) e.g.,
6	Doubling additively e.g., $32+32=64 ; 64+32=96$
or higher	Uses a multiplicative strategy - Unitising e.g., 8 carrots per bag because $4 \times 8=32 ; 12 \times 8=96$ - Using ratios e.g., Three times as many bags because $3 \times 4=12 ; 3 \times 32=96$

DECISION: If any " 6 " are circled in Tasks 12, 13 or 14, CONTINUE the interview. If only "E6" are circled, STOP the interview. If in any doubt, CONTINUE the interview.

Hanni uses 32 carrots to fill 4 bags.

How many carrots does he need to fill 12 bags?

Kathie ran 4.3 kilometres on the first day. She ran 5.15 kilometres on the second day.

How far did Kathie run altogether?

TASK 15

Stage	Strategy observed
6	Cannot solve the problem or Uses an earlier numeracy stage Misunderstands decimal place value (Stage 6) e.g., - Ignores the decimal points e.g., $4.3+5.15=558$ - Treats numbers after the decimal as whole numbers e.g., $4.3+5.15$ " $=$ " 9.18 [often said "nine point eighteen"]
Early 7 or higher	Uses part-whole strategies with decimal place value understanding e.g., - Place value partitioning e.g., $(4+5)+(0.3+0.1)+0.05=9.45$ - Adding on in parts e.g., $4.3+5=9.3 ; 9.3+0.15=9.45$ or $9.3+0.1=9.4 ; 9.4+0.05=9.45$

TASK 16

Stage	Strategy observed
6	Cannot solve the problem or Uses an earlier numeracy stage
	Uses a mix of multiplicative and additive strategies (Stage 6) e.g., $12+12+12=36 ; 36 \times 10=360 ; 360+36=396$ or $30 \times 12=360 ; 360+12+12+12=396$
Early 7	Uses a multiplicative strategy e.g.,
or higher	- Partitioning e.g., $33 \times 10=330 ; 33 \times 2=66 ; 330+66=396$ or
	$30 \times 10=300 ; 3 \times 10=30 ; 30 \times 2=60 ; 3 \times 2=6 ; 300+30+60+6=396$
	- Derived from basic facts e.g., $3 \times 12=36$ and $30 \times 12=360 ; 36+360=396$
	- Triples and thirds e.g., $12 \times 33=4 \times 99 ; 4 \times 100=400 ; 400-4=396$

There are 33 boxes.
Each box holds 12 bottles of lemonade.

How many bottles are there altogether?

INTERVIEW 1 TASK 17

There are 20 children who go to a country school. Three-fifths ($\frac{3}{5}$) of them travel to school by bus.

How many children is that?

TASK 17

SAY: There are 20 children who go to a country school. Three-fifths of them travel to school by bus. How many children is that?

Stage Strategy observed

$6 \quad$ Cannot solve the problem or Uses an earlier numeracy stage
Uses additive strategies (Stage 5) e.g.,
$\frac{1}{5}$ of 20 is 4 because $4+4+4+4+4=20 ; \frac{3}{5}$ of $20=4+4+4=12$
Early 7

Uses multiplicative strategies e.g.,

$\frac{1}{5}$ of 20 is 4 because $5 \times 4=20$ or $20 \div 5=4$
then multiplies (or adds) to get $\frac{3}{5}$, i.e., $3 \times 4=12$ [or $4+4+4=12$]

DECISION: If any "E7" are circled in Tasks $\mathbf{1 5}, 16$ or 17, CONTINUE the interview. If only " 6 " are circled, STOP the interview. If in any doubt, CONTINUE the interview.

TASK 18

SAY: In 1912 the world record time for the 100 metre sprint was 10.6 seconds.
It is now 9.69 seconds.
By how much has the record changed?

Stage	Strategy observed
Early 7	Cannot solve the problem or Uses an earlier numeracy stage Misinterprets decimal place value (Stage 6) e.g., - Treats numbers after the decimal as whole numbers e.g., $\text { (10-9)+(0.6-0.69)"=" } 1-0.63=0.37$ Attempts part-whole strategy with error (Stage 6) e.g., $(0.6-0.69)=0.09 ; 1+0.09=1.09$ (compensates in the wrong direction)
$\stackrel{7}{\text { or higher }}$	Uses part-whole strategies e.g., - Place value partitioning e.g., $(10-9)+(0.6-0.69)=1-0.09=0.91$ - Making to ones e.g., $9.69+0.31=10 ; 10+0.6=10.6 ; 0.6+0.31=0.91$ - Takes off a tidy number and compensates e.g., $10.6-1.0=9.6 ; 9.6+0.09=9.69 ; 1-0.09=0.91$ - Takes off to get a tidy number and compensates e.g., $10.6-9.6=1.0 ; 1.0-0.09=0.91$

In 1912 the world record time for the 100 metre sprint was 10.6 seconds.
It is now 9.69 seconds.

By how much has the record changed?

Bas needs to buy 114 cans of soft drink.

How many 6-packs should he get?

TASK 19

SAY: Bas needs to buy 114 cans of soft drink.
How many 6 -packs should he get?

Stage	Strategy observed
Early 7	Cannot solve the problem or Uses an earlier numeracy stage Uses a mix of multiplicative and additive strategies (Stage 6) e.g., $6 \times 10=60 ; 60+60=120 ; 120-6=114 ; 10+10-1=19$
7	Uses a multiplicative strategy e.g.,
or higher	- Basic facts with adjustment e.g.,
	$10 \times 6=60 ; 20 \times 6=120 ; 120-6=114 ; 10+10-1=19$
	- Halving then basic facts with adjustment e.g.,
	$114 \div 6=57 \div 3 ; 60 \div 3=20 ; 20-1=19$
	- Nice (compatible) numbers e.g., $120 \div 6=20 ; 120-6=114 ; 20-1=19$

TASK 20

SAY: Three boys share two pizzas equally.
Eight girls share six pizzas equally.
Who gets more pizza, one of the boys or one of the girls?

Stage	Strategy observed
Early 7	Cannot solve the problem or Uses an earlier numeracy stage
7	Uses proportional approach e.g.,
or higher	- Uses equivalent fractions to get unit rate
	e.g., $2 \div 3=\frac{2}{3}=\frac{8}{12}$ of a pizza and
	$6 \div 8=\frac{6}{8}=\frac{3}{4}=\frac{9}{12}$ of a pizza, $\frac{9}{12}>\frac{8}{12}$ so girls get more each.

- Uses equivalent ratios e.g., 2:3 $=6: 9$ so 9 boys would share 6 pizza and they get a lesser share than 8 girls sharing 6 pizza.
- Rate argument e.g., 3 times as much pizza for the girls but fewer than 3 times as many girls.

Partial solution e.g.,

$2 \div 3=\frac{2}{3}$ of a pizza, $6 \div 8=\frac{6}{8}=\frac{3}{4}$ of a pizza, and $\frac{3}{4}>\frac{2}{3}$
[Ask: How do you know $\frac{3}{4}>\frac{2}{3}$? Rate as " 7 " if they can explain why.]
DECISION: If any " 7 " are circled in Tasks 18, 19 or 20, CONTINUE the interview.
If only "E7" are circled, STOP the interview If in any doubt, CONTINUE the interview.

Three boys share two pizzas equally.

Eight girls share six pizzas equally.

Who gets more pizza, one of the boys or one of the girls?

INTERVIEW 1 TASK 21

The hairdresser has 4.5 litres of dye left. Each tint uses 0.375 litres of dye.

How many tints can the hairdresser do?

TASK 21

SAY: The hairdresser has 4.5 litres of dye left. Each tint uses 0.375 litres of dye. How many tints can the hairdresser do?

Stage	Strategy observed
7	Cannot solve the problem or Uses an earlier numeracy stage
Early 8	Uses multiplicative strategies e.g.,
or higher	- Successive doubling e.g., $2 \times 0.375=0.75 ; 2 \times 0.75=1.5 ; 3 \times 1.5=4.5 ; 2 \times 2 \times 3=12$
	- Multiplication facts and compensation e.g.,
	$3.750 \div 0.375=10 ; 4.5-3.750=0.750 ; 0.750 \div 0.375=2 ; 10+2=12$ or
	$10 \times 0.375=3.75 ; 2 \times 0.375=0.75 ; 10+2=12$
	Turns decimals into fractions e.g., $0.375=\frac{3}{8} ; 4.5=4 \frac{1}{2} ; 4 \frac{1}{2}=\frac{36}{8} ; \frac{36}{8} \div \frac{3}{8}=12$

TASK 22

SAY: Jacinda gets 32 of her 40 shots in. What percentage of her shots does she get in?

Stage	Strategy observed
7	Cannot solve the problem or Uses an earlier numeracy stage Estimation strategies (Stage 7) e.g., Half of 40 is 20 (that's 50%) and 30 shots is three-quarters (that's 75%) so it is more than three-quarters.
Early 8 or higher	Uses multiplicative strategies e.g., $2 \frac{1}{2} \times 40$ is 100; $2 \frac{1}{2} \times 32$ is $80 ; 80$ out of $100=80 \%$ Uses equivalent fractions e.g., $\frac{32}{40}=\frac{8}{10}=\frac{80}{100}=80 \%$

Jacinda gets 32 of her 40 shots in.

What percentage of her shots does she get in?

MINISTRYOFEDUCATION
Te Tähuhu o te Mātauranga

GloSS INTERVIEW 2

TASK 1

ACTION: Place 9 counters of the same colour on the table.
SAY: How many counters are there?

Stage	Strategy observed
0	Student cannot count 9 objects
1	Correctly counts the 9 objects

DECISION: If "1" is circled in Task 1, CONTINUE the interview.
If " 0 " is circled, rate the student at Stage 0 and STOP the interview.

TASK 2

$2+5=\square$

SAY: Please hold out your hands for me.
SAY: Here are 2 counters.
SAY: Here are another 5 counters.

SAY: How many counters have you got altogether?

ACTION: Place 2 counters in the student's hand.
ACTION: Place 5 counters in their other hand.
ACTION: Close the student's hands to encourage imaging.
ACTION: Allow the student to open their hands if they find imaging difficult.

Stage	Strategy observed
1	Cannot solve the addition problem (Stage 1)
$2-3$	Physically counts all the objects from 1 on materials (Stage 2) Correctly counts all the items from 1 by imaging (Stage 23)
4	Counts on e.g., 3, 4, 5, 6, 7 or 6, 7 Knows $2+5$

DECISION: If either " $2-3$ " or " 4 " are circled in Task 2, CONTINUE the interview.
If " 1 " is circled, STOP the interview. If in any doubt, CONTINUE the interview.

INTERVIEW 2 TASIK 2

$2+5=\square$

INTERVIEW 2 TASIK 3
$8+6=\square$

TASK 3

ACTION: Place 8 counters under a card then place 6 under another card.
SAY: Here are 8 counters, and here are 6 counters.
How many counters are there altogether?

Stage	Strategy observed
3	Cannot solve the problem (After removing the cards - Stage 1) Counts all objects from 1 on materials (Stage 2) e.g., 1, 2, 3, ..., 14 Counts all objects from 1 by imaging (Stage 3) e.g., 1, 2, 3, ..., 14
4	Counts on (Stage 4) e.g., 9, 10, 11, 12, 13, 14 or 7, 8, ... 13, 14
Early 5 or higher	Uses a part-whole strategy e.g., - Making to ten e.g., $8+2=10 ; 10+4=14$ - Doubling with compensation e.g., $6+6=12 ; 12+2=14$ or $7+7=14$ or $8+8=16 ; 16-2=14$ - Addition fact e.g., $8+6=14$

TASK 4

```
There are 5 motorbikes in each row.
    There are 5 rows of motorbikes.
    & (
    A A A A S
```



```
    \thereforeA AB A: \, \
How many motorbikes are there altogether?
```

SAY: There are 5 motorbikes in each row.
SAY: There are 5 rows of motorbikes.
SAY: How many motorbikes are there altogether?

ACTION: Sweep one row with your finger
ACTION: Point to each row one by one

Stage	Strategy observed
3	Cannot solve the problem
	Counts all objects from 1 on materials (Stage 2) e.g., 1, 2, 3, 4, 5, 6, $\ldots, \mathbf{2 5}$
	Counts all objects from 1 by imaging (Stage 3) e.g., 1, 2, 3, 4, 5, 6, $\ldots, \mathbf{2 5}$
4	Skip counting (Stage 4) e.g., 5, 10, 15, 20, 25
Early 5	Uses an additive or multiplicative strategy e.g.,
or higher	- Repeat addition e.g., $5+5+5+5+5=25$
	- Additive strategies e.g., $5+5=10 ; 10+10=20 ; 20+5=25$
	- Multiplication strategies e.g., $4 \times 5=20 ; 20+5=25$
	- Multiplication fact e.g., $5 \times 5=25$

There are 5 motorbikes in each row. There are 5 rows of motorbikes.

How many motorbikes are there altogether?

INTERVIEW 2 TASIK 5

These 15 players have to spread out evenly on the court.

How many players should be in
 each third of the court?

TASK 5

ACTION: Provide 15 counters (players).
Allow the student access to these counters if necessary.
SAY: These 15 players have to spread out evenly on the court.
How many players should be in each third of the court?

Stage	Strategy observed
2-4	Cannot solve the problem Equally shares the players, on materials or by imaging (Stage 2-4)
Early 5 or higher	Uses an additive or multiplicative strategy e.g., - Additive partitioning e.g., $5+5=10 ; 5+5+5=15$ - Multiplication or division strategies e.g., $3 \times 4=12 ; 12+3=15$ - Multiplication or division fact e.g., $3 \times 5=15$ or $15 \div 3=5$

DECISION: If any "E5" are circled in Tasks 3, $\mathbf{4}$ or 5, or if the "4s" are circled in both Task $\mathbf{3}$ and Task 4, CONTINUE the interview.
Otherwise STOP the interview. If in any doubt, CONTINUE the interview.

TASK 6

SAY: I have 84 cards.
I give 7 cards to my friend.
How many cards do I have left?

Stage	Strategy observed
Early 5	Cannot solve the problem or Uses an earlier numeracy stage
	Counting back (Stage 4) e.g., 83, 82, 81, 80, 79, 78, 77
	Mix of counting and part-whole strategies (Stage E5) e.g., $84-4=80 ; 79,78,77$
5	Uses a part-whole strategy e.g.,
or higher	- Making to tens e.g., $84-4=80 ; 80-3=77$
	- Take off tidy number and compensates e.g., $84-10=74 ; 74+3=77$
	- Uses doubles e.g., $7+7=14$ or $14-7=7$ so $84-7=77$

I have 84 cards.
I give 7 cards to my friend.

How many cards do I have left?

INTERVIEW 2 TASIK 7

You have 30 balls to put into bags. Each bag can hold 5 balls.

How many bags do you need?

TASK 7

SAY: You have 30 balls to put into bags. Each bag can hold 5 balls. How many bags do you need?

Stage	Strategy observed
Early 5	Cannot solve the problem or Uses an earlier numeracy stage
	Skip counting (Stage 4) e.g., $5,10,15, \ldots, 30$
	Repeated addition (Stage E5) e.g., $5+5+5+\ldots+5=30$
5	Uses an additive or multiplicative strategy e.g.,
or higher	- Additive strategies e.g., $5+5=10 ; 10+10+10=30 ; 2+2+2=6$
	- Derive from multiplication facts e.g., $4 \times 5=20 ; 2 \times 5=10 ; 4+2=6$ or
	$5 \times 5=25 ; 25+5=30 ; 5+1=6$
	Multiplication or division facts e.g., $6 \times 5=30$ or $30 \div 5=6$

TASK 8

SAY: The white piece is one-quarter of a strip.
What fraction is the grey piece?
Note: Say "fourth" instead of "quarter" if this is more familiar to your student.

Stage	Strategy observed
Early 5	Cannot solve the problem or Uses an earlier numeracy stage Answer other than three quarters (Stage 3-4) Answer of three quarters without reasonable justification (Stage E5)
5	Maps one quarter three times and says three quarters e.g., $\frac{1}{4}, \frac{2}{4}, \frac{3}{4}$

DECISION: If any " 5 " are circled in Tasks 6, $\mathbf{7}$ or 8, CONTINUE the interview. If only "E5" are circled, STOP the interview. If in any doubt, CONTINUE the interview.

The white piece is one-quarter of a strip.

$$
1 / 4
$$

What fraction is the grey piece?

INTERVIEW 2 TASIK 9

Miriama scored 476 points on a video game. Deb scored 123 points on the same game.

How many more points did Miriama score than Deb?

TASK 9

SAY: Miriama scored 476 points on a video game.
Deb scored 123 points on the same game.
How many more points did Miriama score than Deb?

How many more points did Miriama score than Deb?

Stage	Strategy observed
5	Cannot solve the problem or Uses an earlier numeracy stage Repeat addition or skip counting in hundreds, tens and ones (Stage E5) e.g., [123] 223, 323, 423, 433, 443, ... 473, 474, 475, 476; $300+50+3$ Mix of counting and part-whole strategies (Stage E5/5) e.g., [123] 223, 323, 423; $423+50+3=300+50+3=353$
Early 6 or higher	Uses a part-whole strategy e.g., - Place value partitioning e.g., $(400-100)+(70-20)+(6-3)=300+50+3=353$ - Adding on or subtracting in parts e.g., $123+300=423 ; 423+50=473 ; 473+3=476 ; 300+50+3=353$

TASK 10

How many packs of felt pens can you buy for $\$ 88$?
Stage
5

Strategy observed
$5 \quad$ Cannot solve the problem or Uses an earlier numeracy stage
Uses an additive strategy e.g.,

- Skip counting (Stage 4) e.g., 8, 16, 24, ..., 88
- Repeated addition e.g., (Stage E5) e.g., $8+8+\ldots+8=88$
- Doubling additively (Stage 5)
e.g., $8+8=16 ; 16+16=32 ; 32+32=64 ; 64+16+8=88$

Early 6
or higher
Uses a multiplicative strategy e.g.,

- Derives from multiplication facts e.g., $10 \times 8=80 ; 11 \times 8=80+8=88$
- Multiplication facts e.g., $11 \times 8=88$ or $88 \div 8=11$

A pack of felt pens cost \$8.

How many packs of felt pens can you buy for $\mathbf{\$ 8 8}$?

Which is more money: one-half $\left(\frac{1}{2}\right)$ of $\$ 20$ or one-quarter $\left(\frac{1}{4}\right)$ of $\$ 40$?

TASK 11

SAY: Which is more money: one-half of $\$ 20$ or one-quarter of $\$ 40$?
Note: Say "fourth" instead of "quarter" if this is more familiar to your student.

Which is more money: one-half $\left(\frac{1}{2}\right)$ of $\$ 20$ or one-quarter ($\left(\frac{1}{4}\right)$ of $\$ 40$?

Stage	Strategy observed
5	Cannot solve the problem or Uses an earlier numeracy stage Gets both unit fractions from addition facts (Stage E5) e.g., $10+10+10+10=40$ so $\frac{1}{4}$ of 40 is 10 and $10+10=20$ so $\frac{1}{2}$ of 20 is 10
Early 6 or higher	Uses multiplication or division facts e.g., $\frac{1}{4}$ of 40 is 10 because $10 \times 4=40$ or $40 \div 4=10$ and $\frac{1}{2}$ of 20 is 10 because $10 \times 2=20$ or $20 \div 2=10$

DECISION: If any "E6" are circled in Tasks $\mathbf{9 , 1 0}$ or 11, CONTINUE the interview. If only " 5 " are circled, STOP the interview. If in any doubt, CONTINUE the interview.

TASK 12

SAY: Leeana counted 82 penguins on the beach.
Later there were only 44.
How many penguins had left the beach?

Stage	Strategy observed
Early 6	Cannot solve the problem or Uses an earlier numeracy stage Aix of counting and part-whole strategies (Stage E5) e.g., $72,62,52 ; 52-2=50 ; 50-6=44 ; 30+2+6$ Attempts part-whole strategy with error (Stage 5) e.g., $82-50=32 ; 32-6=26$ (compensates in the wrong direction)
or higher	Uses a part-whole strategy e.g.,
	- Place value partitioning e.g., $(80-40)+(2-4)=40-2=38$
	- Making to tens e.g., $82-2=80 ; 80-30=50 ; 50-6=44 ; 2+30+6=38$ or
	$44+6=50 ; 50+30=80 ; 80+2=82 ; 6+30+2=38$
	- Rounding and compensation e.g., $82-40=42 ; 42-4=38$
	- Equal additions e.g., $82-44=88-50=38$

Leeana counted 82 penguins on the beach.
Later there were only 44.

How many penguins had left the beach?

INTERVIEW 2 TASIK 13

Tom has 8 times as many stickers as Sarah. Tom has 72 stickers.

How many stickers does Sarah have?

TASK 13

SAY: Tom has 8 times as many stickers as Sarah. Tom has 72 stickers. How many stickers does Sarah have?

Stage	Strategy observed
Early 6	Cannot solve the problem or Uses an earlier numeracy stage Adding strategies e.g., - Doubling additively (Stage 5) e.g., $8+8=16 ; 16+16=32 ; 32+32=64 ; 64+8=72 ; 8+1=9$
6	Uses a multiplicative strategy e.g., or higher
	- Derived from a known fact e.g., $8 \times 10=80 ; 80-8=72 ; 10-1=9$
	- Multiplication fact e.g., $8 \times 9=72$ or $72 \div 8=9$

TASK 14

Stage	Strategy observed
Early 6	Cannot solve the problem or Uses an earlier numeracy stage Uses additive strategies only (Stage 5) e.g., $8+8+8=24$ so 24 birds in total; $8+8=16$
6	Uses multiplicative strategies e.g., $3 \times 8=24$ so 24 birds in total then or higher $\quad$$2-\frac{2}{3}=\frac{1}{3} ; \frac{1}{3}=8 ; \frac{1}{3}=2 \times 8=16$

DECISION: If any " 6 " are circled in Tasks 12, $\mathbf{1 3}$ or $\mathbf{1 4}$, CONTINUE the interview. If only "E6" are circled, STOP the interview. If in any doubt, CONTINUE the interview.

There are 8 swans on the lake.
The other two-thirds $\left(\frac{2}{3}\right)$ of the birds on the lake are ducks.

How many ducks are there on the lake?

INTERVIEW 2 TASK 15

The world record for men's shot put is $\mathbf{2 3 . 1 2}$ metres.
The world record for women is 22.63 metres.

What is the difference in metres between the two records?

TASK 15

SAY: The world record for men's shot put is 23.12 metres.
The world record for women is 22.63 metres.
What is the difference in metres between the two records?

Stage	Strategy observed
6	Cannot solve the problem or Uses an earlier numeracy stage
Subtraction misconception (Stage 5) e.g.,	

- Subtracts the whole number then subtracts the smaller decimal from the larger e.g., $23-22=1 ; 0.63-0.12=0.51$ so the answer is 1.51

Early 7 Uses part-whole strategies with decimal place value understanding e.g.,
or higher - Place value partitioning e.g.,

$$
(23-22)+(0.1-0.6)+(0.02-0.03)=1-0.5-0.01=0.49
$$

- Making to ones e.g., $22.63+0.37=23 ; 23+0.12=23.12 ; 0.37+0.12=0.49$
- Rounding and compensation e.g., $22.63+0.5=23.13 ; 23.13-0.01=23.12 ; 0.5-0.01=0.49$
- Equal addition e.g., $(23.12+0.37)-(22.63+0.37)=23.49-23.00=0.49$

TASK 16

interview 2 Task 18

How many books are there altogether?

SAY: I have 6 boxes filled with books.
Each box has 36 books.
How many books are there altogether?
\(\left.\begin{array}{c|l}\hline Stage \& Strategy observed

\hline 6 \& Cannot solve the problem or Uses an earlier numeracy stage

\& Uses additive strategies (Stage 5) e.g.,

\& - Doubling additively e.g., 36+36=72 ; 72+72=144 ; 144+72=216

\& Uses a mix of multiplicative and additive strategies (Stage 6) e.g.,

\& 6 \times 10=60 ; 60+60+60=180 ; 6 \times 6=36 ; 180+36=216\end{array}\right]\)| Early 7 7 | Uses a multiplicative strategy e.g., |
| :---: | :--- |
| or higher | - Place value partitioning with basic facts e.g., $(6 \times 30)+(6 \times 6)=180+36=216$ |
| | - Rounding and compensation e.g., $(6 \times 40)-(6 \times 4)=240-24=216$ |
| | - Doubling and halving e.g., $6 \times 36=3 \times 72=216$ |

I have 6 boxes filled with books.
Each box has 36 books.

How many books are there altogether?

INTERVIEW 2 TASK 17

There are $\mathbf{2 4}$ students in the class.
Three-eighths $\left(\frac{3}{8}\right)$ of them are boys.

How many boys are in the class?

TASK 17

SAY: There are 24 students in the class.
Three-eighths of them are boys.
How many boys are in the class?

How many boys are in the class?

Stage	Strategy observed
6	Cannot solve the problem or Uses an earlier numeracy stage Uses additive strategies (Stage 5) e.g., $\frac{1}{8}$ of 24 is 3 because $3+3+3+\ldots+3=24 ; \frac{3}{8}$ of $24=3+3+3=9$
Early 7	Uses a multiplicative strategy e.g., or higher $\frac{1}{8}$ of 24 is 3 because $8 \times 3=24$ or $24 \div 3=24$ then multiplies (or adds) to get $\frac{3}{8}$ i.e., $3 \times 3=9[$ or $3+3+3=9]$ Obtains from a known fraction e.g., $\frac{4}{8}$ of $24=12 ; \frac{3}{8}$ of $24=12-3=9$

DECISION: If any "E7" are circled in Tasks $\mathbf{1 5}, 16$ or 17, CONTINUE the interview. If only " 6 " are circled, STOP the interview. If in any doubt, CONTINUE the interview.

TASK 18

SAY: On a hot day the tomato plants used 1.5 litres of water.
On a cold day they used 0.885 litres.
How much more water did the plants use on the hot day than the cold day?

Stage	Strategy observed
Early 7	Cannot solve the problem or Uses an earlier numeracy stage Misinterprets or ignores decimal place value (Stage 6) e.g., $1.5-0.885=1+(0.5-0.885) "=" 1-0.88=0.12$
7	Uses part-whole strategies e.g.,
or higher	- Place value partitioning e.g., $(1-0)+(0.5-0.885)=1-0.385=0.615$
	- Other partitioning e.g., $1.5-0.885=0.5+(1-0.885)=0.5+0.115=0.615$
	- Making to tenths and ones e.g.,
	$0.885+0.015=0.9 ; 0.9+0.1=1 ; 0.015+0.1+0.5=0.615$
	- Rounding and compensation e.g., $1.5-0.9=0.6 ; 0.6+0.015=0.615$

On a hot day the tomato plants used 1.5 litres of water. On a cold day they used 0.885 litres.

How much more water did the plants use on the hot day than the cold day?

INTERVIEW 2 TASK 19

There are 12 eggs in a dozen. Jess needs 180 eggs.

How many dozens does Jess need?

TASK 19

SAY: There are 12 eggs in a dozen. Jess needs 180 eggs. How many dozens does Jess need?

Stage	Strategy observed
Early 7	Cannot solve the problem or Uses an earlier numeracy stage Uses a mix of additive and multiplicative strategies (Stage 6) e.g., $10 \times 12=120 ; 120+12+12+12+12+12=180$ or $12+12+12+12+12=60 ; 60 \times 3=180 ; 5 \times 3=15$
or higher	Uses multiplicative strategies e.g., - Derive from basic facts with adjustment e.g., $12 \times 10=120 ; 12 \times 5=60$ - Successive halving e.g., $180 \div 12=90 \div 6=45 \div 3=15 \text { or } 180 \div 6=30 \text { so } 180 \div 12=15$ Uses proportional strategies e.g., - Proportionality e.g., $10 \times 12=120 ; \frac{1}{2} \times 120=60 ; 120+60=180 ; \frac{1}{2} \times 10=5 ; 10+5=15 \text { or }$ 180 is half way between $120(=10 \times 12)$ and $240(=20 \times 12)$; and 15 is half way between 10 and 20 so the answer is 15

TASK 20

SAY: In a big lolly packet there are 24 reds and 16 blacks. A smaller packet with the same mix has a total of 10 lollies. How many black lollies are in that packet?

Stage	Strategy observed
Early 7	Cannot solve the problem or Uses an earlier numeracy stage Uses proportions inappropriately (Stage 6) e.g., $24=1.5 \times 16$, so the answer is $10 \times 1.5=15$ or $16+\frac{1}{2}$ of $16=24 ; 10+\frac{1}{2}$ of $10=15$
$\begin{gathered} 7 \\ \text { or higher } \end{gathered}$	Evaluates the whole and then partitions it proportionally e.g., $\begin{aligned} & 16 \div(24+16)=\frac{16}{40}=\frac{2}{5} ; \frac{2}{5} \text { of } 10=4 \text { or } \\ & 16:(24+16)=16: 40=4: 10 \text { so the answer is } 4 \text { or } \\ & 24: 16 \text { is } 40 \text { in total; } 40 \text { in total is four times } 10 ; 24: 16=(24 \div 4):(16 \div 4) \\ & =6: 4 \text { so the answer is } 4 \end{aligned}$

DECISION: If any " 7 " are circled in Tasks 18, 19 or 20, CONTINUE the interview. If only "E7" are circled, STOP the interview. If in any doubt, CONTINUE the interview.

In a big lolly packet there are $\mathbf{2 4}$ reds and 16 blacks.
A smaller packet with the same mix has a total of 10 lollies.

How many black lollies are in that packet?

INTERVIEW 2 TASIK 21

Each netball bib takes 0.38 metres of cloth to make. You have 9.6 metres of cloth.

Is that enough cloth to make 25 bibs?

TASK 21

```
NTERVIEW 2 TASK 21
```

Is that enough cloth to make 25 bibs?

Stage	Strategy observed
7	Cannot solve the problem or Uses an earlier numeracy stage Attempts multiplication strategy e.g., $25 \times 0.4=10$
Early 8	Uses multiplication strategies e.g.,
or higher	- Doubling e.g.,
	$0.38 \times 20=7.6 ; \frac{1}{2}$ of $3.8=1.9 ; 7.6+1.9=9.5 ;$ so 9.5 m can make 25 or
	$0.38 \times 20=7.6 ; 9.6-7.6=2 ; 2 \div 0.4=5$ (and 0.4 is more than 0.38)
	- Facts of 25 e.g.,
	$25 \times 3=75$ so $25 \times 0.3=7.5 ; 25 \times 0.08=2 ;$ so $25 \times 0.38=7.5+2=9.5$ or
	$38 \times 100=38$ metres; $25=\frac{1}{4} \times 100 ; \frac{1}{4} \times 38=\frac{1}{4} \times 36+\frac{1}{4} \times 2=9+0.5=9.5$ so 9.5 m
	enough to make 25 bibs.

TASK 22

SAY: To make 8 aprons, it takes 6 metres of cloth. How many metres would you need to make 20 aprons?

Stage	Strategy observed
7	Cannot solve the problem or Uses an earlier numeracy stage Uses inappropriate additive strategy (Stage 5) e.g., $8+12=20 ; 6+12=18 \text { or } 8-6=2 ; 20-2=18$ Uses estimation (Stage 6/7) e.g., Less than 1 metre to make 1 apron so about 15 or 16 metres
Early 8 or higher	Uses a proportional approach e.g., - Multiplicative strategies e.g., $8 \times 2.5=20 ; 6 \times 2.5=15$ - Unitising e.g., 8 aprons take 6 metres so 1 apron takes $\frac{6}{8}$ metre $=\frac{3}{4}$ metre; $\frac{3}{4}$ of $20=15$ - Equivalent fractions or ratios e.g., $20: 8=10: 4=5: 2=15: 6$ so the answer is 15

To make 8 aprons, it takes 6 metres of cloth.

How many metres would you need to make 20 aprons?
$\approx \approx \sim \approx \sim \approx \sim \approx \sim \ldots$
MINISTRYOFEDUCATION
Te Tāhuhu o te Mātauranga

GloSS
 INTERVIEW 3

TASK 1

ACTION: Place 7 counters of the same colour on the table.
SAY: How many counters are there?

Stage	Strategy observed
0	Student cannot count 7 objects
1	Correctly counts the 7 objects

DECISION: If " 1 " is circled in Task 1, CONTINUE the interview.
If " 0 " is circled, rate the student at Stage 0 and STOP the interview.

TASK 2

$2+4=\square$

SAY: Please hold out your hands for me.
SAY: Here are 2 counters.
SAY: Here are another 4 counters.
SAY: How many counters have you got altogether?

ACTION: Place 2 counters in the student's hand.
ACTION: Place 4 counters in their other hand.
ACTION: Close the student's hands to encourage imaging.
ACTION: Allow the student to open their hands if they find imaging difficult.

Stage	Strategy observed
1	Cannot solve the addition problem (Stage 1)
$2-3$	Physically counts all the objects from 1 on materials (Stage 2) Correctly counts all the items from 1 by imaging (Stage 3)
4 or higher	Counts on e.g., 3, 4, 5, 6 or 5, 6 Knows 2 + 4
DECISION:	If either "2-3" or "4" are circled in Task 2, CONTINUE the interview. If "1" is circled, STOP the interview. If in any doubt, CONTINUE the interview.

INTERVIEW 3 TASIK 2

$2+4=\square$

INTERVIEW 3 TASIK 3

$8+5=\square$

TASK 3

ACTION: Place 8 counters under a card then place 5 under another card.
SAY: Here are 8 counters, and here are 5 counters.
How many counters are there altogether?

Stage	Strategy observed
3	Cannot solve the problem (After removing the cards - Stage 1)
	Counts all objects from 1 on materials (Stage 2) e.g., 1, 2, 3, $\ldots, 13$ Counts all objects from 1 by imaging (Stage 3) e.g., 1, 2, 3, $\ldots, 13$
4	Counts on (Stage 4) e.g., 9, 10, 11, 12, 13 or $6,7, \ldots, 12,13$
Early 5	Uses a part-whole strategy e.g.,
or higher	- Making to ten e.g., $8+2=10 ; 10+3=13$
	- Doubling with compensation e.g., $5+5=10 ; 10+3=13$ or $8+8=16 ; 16-3=13$
	- Addition fact e.g., $8+5=13$

TASK 4

ACTION: Sweep one row with your finger
ACTION: Point to each row one by one

SAY: There are 6 houses in each row.
SAY: There are 3 rows of houses.
SAY: How many houses are there altogether?

Stage	Strategy observed
3	Cannot solve the problem
	Counts all objects from 1 on materials (Stage 2) e.g., 1, 2, $\ldots, 6,7, \ldots, 18$ Counts all objects from 1 by imaging (Stage 3) e.g., 1, 2, $\ldots, 6,7, \ldots, 18$
4	Skip counting (Stage 4) e.g., 6, 12, 18 [or 3, 6, 9, 12, 15, 18]
Early 5	Uses an additive or multiplicative strategy e.g.,
or higher	- Repeat addition e.g., $6+6+6=18$ or $6+6=12 ; 12+6=18$
	- Multiplication strategies e.g., $2 \times 6=12 ; 12+6=18$
	- Multiplication fact e.g., $3 \times 6=18$

There are 6 houses in each row.
There are 3 rows of houses. How many houses are there altogether?

INTERVIEW 3 TASIK 5

You have 12 lollipops for your party. A quarter of the lollipops are lemon.

How many lemon lollipops are there?

TASK 5

ACTION: Provide 12 counters (lollipops).
Allow the student access to these counters if necessary.
SAY: You have 12 lollipops for your party.
A quarter of the lollipops are lemon.
How many lemon lollipops are there?
Note: Say "fourth" instead of "quarter" if this is more familiar to your student.

Stage	Strategy observed			
$2-4$	Cannot solve the problem			
Equally shares the lollipops, on materials or by imaging (Stage 2-4)			Early 5	Uses an additive or multiplicative strategy e.g.,
:---:	:---			
or higher	- Additive partitioning e.g., $6+6=12$ and $3+3+3+3=12$ - Multiplication or division strategy e.g., $3 \times 3=9 ; 9+3=12$			

DECISION: If any "E5" are circled in Tasks 3, 4 or 5, or if the "4s" are circled in both Task 3 and Task 4, CONTINUE the interview.
Otherwise STOP the interview. If in any doubt, CONTINUE the interview.

TASK 6

SAY: Tui has $\$ 36$.
She needs \$58 to buy a kitten.
How much more does she need to save?

Stage	Strategy observed
Early 5	Cannot solve the problem or Uses an earlier numeracy stage
	Counting on or Counting back (Stage 4) e.g., 37, 38, $\ldots, 58$
	Skip counting in tens and ones (Stage 4) e.g., [36] 46, 56, 57, 58
	Repeat addition in tens and ones (Stage E5) e.g.,
	$58-10=48 ; 48-10=38 ; 38-2=36 ; 20+2=22$ or
	$36+10=46 ; 46+10=56 ; 56+2=58 ; 20+2=22$
	Mix of counting and part-whole strategies (Stage E5) e.g.,
	$36+4=40 ; 40+10=50 ; 51,52, \ldots, 57,58$
5	Uses a part-whole strategy e.g.,
or higher	- Place value partitioning e.g., $(50-30)+(8-6)=20+2=22$
	- Adding on in parts e.g., $36+20=56 ; 56+2=58 ; 20+2=22$
	- Making to ten e.g., $36+4=40 ; 40+10=50 ; 50+8=58 ; 4+10+8=22$

Tui has $\$ 36$.
She needs $\$ 58$ to buy a kitten.

How much more does she need to save?

INTERVIEW 3 TASIK 7

There were 45 students at a quiz night. Each team had 5 students in it.

How many teams were competing in the quiz?

TASK 7

SAY: There were 45 students at a quiz night.
Each team had 5 students in it.
How many teams were competing in the quiz?

Stage	Strategy observed
Early 5	Cannot solve the problem or Uses an earlier numeracy stage
	Skip counting (Stage 4) e.g., $5,10,15, \ldots, 45$
	Repeated addition (Stage E5) e.g., $5+5+5+\ldots+5=45$
5	Uses an additive or multiplicative strategy e.g.,
or higher	- Additive strategies
	e.g., $5+5=10 ; 10+10=20 ; 20+20=40 ; 40+5=45 ; 8+1=9$
	- Derive from multiplication facts
	e.g., $4 \times 5=20 ; 20+20=40 ; 40+5=45 ; 8+1=$
	- Multiplication or division facts e.g., $5 \times 9=45$ or $45 \div 5=9$

TASK 8

SAY: Kimberley irons her 8 T-shirts in 4 minutes.
How long does it take her to iron 1 T -shirt?

Stage	Strategy observed
Early 5	Cannot solve the problem or Uses an earlier numeracy stage Incorrect additive strategy (Stage 4) e.g., $4+4=8 ; 1+4=5$ minutes or $4+4=8$ so $1+1=2$ minutes
$\begin{gathered} \mathbf{5} \\ \text { or higher } \end{gathered}$	Uses a proportional approach e.g., - Additive strategies e.g., $\frac{1}{2}+\frac{1}{2}+\ldots+\frac{1}{2}=4$ or $4+4=8$ and $\frac{1}{2}+\frac{1}{2}=1$ so the answer is $\frac{1}{2}$ - Multiplicative strategies e.g., 4 is half of 8 so it's half of 1 minute or $4 \div 8=\frac{1}{2}$ minute - Rate strategies e.g., $8: 4=4: 2=2: 1$ so the answer is $\frac{1}{2}$ a minute ($=30$ seconds)

DECISION: If any " 5 " are circled in Tasks 6, 7 or 8, CONTINUE the interview. If only "E5" are circled, STOP the interview. If in any doubt, CONTINUE the interview.

Kimberley irons her 8 T-shirts in 4 minutes.

How long does it take her to iron 1 T-shirt?

INTERVIEW 3 TASK 9
There were 128 lambs in a field.
Another 74 lambs joined them.

How many lambs were there altogether?

TASK 9

SAY: There were 128 lambs in a field.
Another 74 lambs joined them.
How many lambs were there altogether?

How many lambs were there altogether?

Stage	Strategy observed
5	Cannot solve the problem or Uses an earlier numeracy stage Skip counting in tens and ones (Stage 4) e.g., [128] 138, ..., 198; 199, 200, 201, 202 Repeat addition in tens and ones (Stage E5) e.g., $128+10+10+\ldots+10=198 ; 199,200,201,202$ Mix of counting and part-whole strategies (Stage E5) e.g., $128+10+10+\ldots+10=198 ; 198+2+2=202$ Attempts part-whole strategy with error (Stage E5) e.g., 192 (no carrying)
Early 6 or higher	Uses a part-whole strategy e.g., - Place value partitioning e.g., $(120+70)+(8+4)=190+12=202$ - Adding on in parts e.g., $128+70=198 ; 198+4=202$ or $120+74=194 ; 194+8=202$ - Making to ten e.g., $128+2=130 ; 130+70=200 ; 200+2=202$

TASK 10

Stage	Strategy observed
5	Cannot solve the problem or Uses an earlier numeracy stage Uses an additive strategy e.g., - Skip counting (Stage 4) e.g., 15, 30, 45, 60, 75, 90 [or 6, 12, 18, ..., 90] - Repeated addition e.g., (Stage E5) e.g., $15+15+\ldots+15=90[\text { or } 6+6+\ldots+6=90]$ - Doubling additively (Stage 5) e.g., $15+15=30 ; 30+30=60 ; 60+30=90$
Early 6 or higher	Uses a multiplicative strategy e.g., - Place value partitioning e.g., $6 \times 10=60 ; 6 \times 5=30 ; 60+30=90$ - Derived from basic fact e.g., $6 \times 10=60 ; 60+6+6+6+6+6=90$ - Halving and doubling e.g., $6 \times 15=3 \times 30=90$

Ra has 6 packets of biscuits. There are 15 biscuits in each packet.

How many biscuits does Ra have?

INTERVIEW 3 TASIK 11

You cut a lamington into 4 equal pieces.
Then you cut each piece in half.

What fraction of the lamington are these smaller pieces?

TASK 11

SAY: You cut a lamington into 4 equal pieces.
Then you cut each piece in half.
What fraction of the lamington are these smaller pieces?

Stage \quad Strategy observed
5 Cannot solve the problem OR Uses an earlier numeracy stage

Early 6
Uses an additive or multiplicative strategy e.g.,

- Additive strategy e.g., $2+2+2+2=8$, so these pieces are quarters, and the smaller ones are eighths
- Multiplicative strategy e.g., $4 \times 2=8$ so the pieces are eighths

DECISION: If any "E6" are circled in Tasks $\mathbf{9}, \mathbf{1 0}$ or 11, CONTINUE the interview. If only " 5 " are circled, STOP the interview. If in any doubt, CONTINUE the interview.

TASK 12

SAY: Mitchell had 231 toy cars in his collection.
He sold 78 of them.
How many cars did he have left?

Stage	Strategy observed
Early 6	Cannot solve the problem or Uses an earlier numeracy stage Aix of counting and part-whole strategies (Stage E5) e.g., Attempts part-whole strategy with error (Stage 5) e.g., $231-80=151 ; 151-2=149$ (compensates in the wrong direction)
6	Uses a part-whole strategy e.g.,
or higher	- Place value partitioning e.g., $(230-70)+(1-8)=160-7=153$
	- Making to hundreds e.g., $231-31=200 ; 78-31=47 ; 200-47=153$
	- Subtracting tidy number and compensation e.g., 231-80 $=151 ; 151+2=153$
	- Equal additions e.g., $231-78=253-100=153$

Mitchell had 231 toy cars in his collection. He sold 78 of them.

How many cars did he have left?

INTERVIEW 3 TASIK 13

The teacher bought 48 packs of pencils at the beginning of the year. There were 5 pencils in each pack.

How many pencils did she buy?

TASK 13

SAY: The teacher bought 48 packs of pencils at the beginning of the year. There were 5 pencils in each pack.

How many pencils did she buy?

```
The teacher bought 48 packs of pencils at the
beginning of the year.
There were 5 pencils in each pack.
\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline Early 6 & \begin{tabular}{l} 
Cannot solve the problem or Uses an earlier numeracy stage \\
\\
\\
\\
Uses additive strategies e.g., \\
- Doubling additively (Stage 5) e.g., \(48+48=96 ; 96+96=192 ; 192+48=240\) \\
\hline 6 \\
or higher
\end{tabular} \begin{tabular}{l} 
Uses a multiplicative strategy e.g., \\
\\
\\
\\
\\
\\
\\
\\
- Place value partitioning with basic facts e.g., \((5 \times 40)+(5 \times 8)=200+40=240\) \\
- Rounding and halving e.g., \(48 \times 5=24 \times 10=240\)
\end{tabular} \\
\hline
\end{tabular}

\section*{TASK 14}

SAY: Three friends share two pizzas.
What fraction of a pizza does each friend get?

\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline Early 6 & Cannot solve the problem or Uses an earlier numeracy stage \\
& \begin{tabular}{c} 
Uses an additive strategy (Stage 5) e.g., \\
\\
\\
\\
\\
\hline 6 \\
combined fraction.
\end{tabular} \\
\hline 6 & Uses a multiplicative strategy e.g., \\
or higher & Two lots of \(\frac{1}{3}\) of \(1=2 \times \frac{1}{3}=\frac{2}{3}\) or \\
& 2 out of 6 pieces is \(\frac{2}{3}\) of one pizza or \\
& \(3 \times \frac{1}{2}=1 \frac{1}{2} ; \frac{1}{3}\) of \(\frac{1}{2}=\frac{1}{6} ; \frac{1}{2}+\frac{1}{6}=\frac{2}{3}\) \\
\hline
\end{tabular}

DECISION: If any "6" are circled in Tasks 12, 13 or 14, CONTINUE the interview.
If only "E6" are circled, STOP the interview. If in any doubt, CONTINUE the interview.

Three friends share two pizzas.


What fraction of a pizza does each friend get?

\section*{INTERVIEW 3 TASK 15}

The electrician has 5.33 metres of cable. He uses 2.9 metres on a job.


\section*{TASK 15}

SAY: The electrician has 5.33 metres of cable.
He uses 2.9 metres on a job.
How much cable is left?
\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline 6 & Cannot solve the problem or Uses an earlier numeracy stage \\
& Misinterprets decimal place value (Stage 6) e.g., \\
& - Ignores the decimal points e.g., \(533-29=504\) \\
& - Treats numbers after the decimal as whole numbers e.g., \\
& \(5.33-2.9=(5-2)+(0.33-0.9\) " \(=\) " 0.24\()=3.24\) \\
\hline \multirow{3}{*}{ Early 7} & Uses part-whole strategies e.g., \\
or higher & - Taking off in parts e.g., \(5.33-2.0=3.33 ; 3.33-0.9=2.43\) \\
& - Place value partitioning e.g., \((5-2)+(0.3-0.9)+0.03=3-0.6+0.03=2.43\) \\
& - Making to ones e.g., \(2.9+0.1=3.0 ; 3.0+2.33=5.33 ; 0.1+2.33=2.43\) \\
& - Rounding and compensation e.g., \(5.33-3.0=2.33 ; 2.33+0.1=2.43\) \\
\hline
\end{tabular}

\section*{TASK 16}

\begin{tabular}{|c|c|}
\hline Stage & Strategy observed \\
\hline 6 & \begin{tabular}{l}
Cannot solve the problem or Uses an earlier numeracy stage \\
Uses additive strategies (Stage 5) e.g., \\
- Additive doubling or tripling e.g., \(3+3+3=9 ; 9+9+9=27 ; 27+27+27=81\) \\
Uses a mix of additive and multiplicative strategies (Stage 6) e.g., \(20 \times 3=60 ; 60+3+3+3+\ldots+3=81\) so the answer is \(20+7=27\)
\end{tabular} \\
\hline \begin{tabular}{l}
Early 7 \\
or higher
\end{tabular} & \begin{tabular}{l}
Uses multiplicative strategies e.g., \\
- Derive from basic facts e.g., \((3 \times 20)+(3 \times 7)=60+21=81 ; 20+7=27\) or \(30 \times 3=90 ; 90-(3 \times 3)=90-9=81 ; 30-3=27\) \\
- Proportional adjustment e.g., \(81 \div 9=9\) so \(81 \div 3=3 \times 9=27\)
\end{tabular} \\
\hline
\end{tabular}

Solomona has ordered 81 tennis balls. They are in cans of 3 balls.


How many cans should there be?

\section*{INTERVIEW 3 TASIK 17}

Mihi and Josh have three-quarters \(\left(\frac{3}{4}\right)\) of a cake. They share it equally.

How much cake does each person get?

\section*{TASK 17}

SAY: Mihi and Josh have three-quarters of a cake.
They share it equally.
How much cake does each person get?


Note: Say "three-fourths" instead of "three-quarters" if this is more familiar to your student.
\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline 6 & Cannot solve the problem or Uses an earlier numeracy stage \\
\hline Early 7 & \begin{tabular}{c} 
Images three quarters, and equally shares e.g., \\
or higher \\
\\
\\
\\
\\
\\
\\
\\
\\
Uses a multiplicative strategy e.g., \(\frac{1}{2}\) of \(\left.\frac{1}{4}\right)=\frac{1}{4}+\frac{1}{8}=\frac{2}{8}+\frac{1}{8}=\frac{3}{8}\) of \(\frac{1}{4}\) is \(\frac{1}{8}\) so \(\frac{1}{2}\) of \(\frac{3}{4}=3 \times \frac{1}{8}=\frac{3}{8}\)
\end{tabular} \\
\hline
\end{tabular}

DECISION: If any "E7" are circled in Tasks 15, 16 or 17, CONTINUE the interview. If only " 6 " are circled, STOP the interview. If in any doubt, CONTINUE the interview.

\section*{TASK 18}

SAY: The ceiling is 2.3 metres high.
The bookcase is 1.845 metres high.
How high, in metres, is the space between the bookcase and the ceiling?

\begin{tabular}{|c|c|}
\hline Stage & Strategy observed \\
\hline Early 7 & Cannot solve the problem or Uses an earlier numeracy stage Misinterprets or ignores decimal place value (Stage 6) e.g.,
\[
2.3-1.845=(2-1)+(0.3-0.845) "=" 1-0.842=0.158 \text { or } 0.152
\] \\
\hline \[
\begin{gathered}
7 \\
\text { or higher }
\end{gathered}
\] & \begin{tabular}{l}
Uses part-whole strategies e.g., \\
- Place value partitioning e.g., \((2-1)+(0.3-0.845)=1-0.545=0.455\) or \((2.3-1.8)+(0-0.045)=0.5-0.045=0.455\) \\
- Making to ones e.g., \(1.845+0.155=2.0 ; 0.155+0.3=0.455\) \\
- Rounding and compensation e.g., \(2.3-1.9=0.4 ; 0.4+0.55=0.455\)
\end{tabular} \\
\hline
\end{tabular}


The ceiling is 2.3 metres high. The bookcase is 1.845 metres high.

How high, in metres, is the space between the bookcase and the ceiling?

\section*{INTERVIEW 3 TASK 19}


Joni has 1.5 kilograms of butter in the fridge.
A batch of scones requires
0.075 kilograms of butter.

How many batches of scones will Joni be able to bake?

\section*{TASK 19}

SAY: Joni has 1.5 kilograms of butter in the fridge. A batch of scones requires 0.075 kilograms of butter. How many batches of scones will Joni be able to bake?

\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline Early 7 & Cannot solve the problem or Uses an earlier numeracy stage \\
& Attempts multiplication strategy (Stage 6) \\
\hline 7 & Uses multiplication strategies e.g., \\
or higher & \(0.075 \times 20=1.5\) [because \(75 \times 2=150\) ] so the answer is 20 or \\
& \(1500 \div 75\) (simplify by 5\()=300 \div 15=60 \div 3=20\) or \\
& 2 batches need \(2 \times 0.075=0.15 ; 10 \times 0.15=1.5 ; 2 \times 10=20\) \\
&
\end{tabular}

\section*{TASK 20}

SAY: One-fifth of the birds on the lake are swans. There are 40 other birds on the lake. How many birds are on the lake altogether?

\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline Early 7 & Cannot solve the problem or Uses an earlier numeracy stage \\
& \begin{tabular}{c} 
Uses additive strategies (Stage 6) e.g., \\
\(\frac{4}{5}\) is 40 because \(10+10+10+10=40\) so \(\frac{1}{5}\) is \(10 ; \frac{5}{5}\) is \(40+10=50\) \\
\hline 7 \\
or higher
\end{tabular} \begin{tabular}{l} 
Uses a multiplicative strategy e.g., \\
\\
\\
\\
\hline\(\frac{4}{5}\) is 40 because \(4 \times 10=40\), so \(\frac{5}{5}\) is \(5 \times 10=50\) \\
\(\frac{4}{5}\) is 40 so \(\frac{1}{5}\) is \(40 \div 4=10 ; \frac{5}{5}\) is \(5 \times 10=50\)
\end{tabular} \\
\hline
\end{tabular}

DECISION: If any "7" are circled in Tasks 18, 19 or 20, CONTINUE the interview. If only "E7" are circled, STOP the interview. If in any doubt, CONTINUE the interview.

One-fifth \(\left(\frac{1}{5}\right)\) of the birds on the lake are swans.
There are 40 other birds on the lake.


How many birds are on the lake altogether?

\section*{INTERVIEW 3 TASIK 21}

Petrol costs 210.9 cents a litre.
Your car takes 40 litres.


Will you be able to buy 40 litres if you have \(\mathbf{\$ 8 5 ?}\)

\section*{TASK 21}


\section*{Stage}

Strategy observed
7 Cannot solve the problem or Uses an earlier numeracy stage

Early 8

\section*{Uses multiplication strategies e.g.,}
or higher
- Place value partitioning e.g.,
\(40 \times 200=8000 ; 40 \times 10=400 ; 40 \times 0.9=36 ; 8000+400+36=8436 c=\$ 84.36\)
- Rounding dollars and cents e.g., Round 210.9 to 211 then \(40 \times \$ 2=\$ 80 ; 40 \times 10 c=\$ 4 ; 40 \times 1 c=40 c ; \$ 80+\$ 4+40 c=\$ 84.40\)
- Unitising (i.e. cost of fuel per litre if 40 litres costs \(\$ 85\) ) e.g., \(80 \div 40=\$ 2 ; 5 \div 40=\frac{1}{8} ; \frac{1}{8}\) of \(\$ 1=12.5\) cents; so could pay if petrol cost 212.5 cents per litre

\section*{TASK 22}

SAY: Mei-ling saved \(\$ 40\) in 16 weeks.
She saved the same amount each week.
How much had she saved after 6 weeks?

\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline 7 & Cannot solve the problem or Uses an earlier numeracy stage \\
& Uses inappropriate additive strategy (Stage 5 ) e.g., \\
& \(16-6=10 ; 40-10=30\) or \(6+10=16 ; 30+10=40\) \\
& Uses estimation (Stage \(6-7)\) e.g., \(6 \leq \frac{1}{2}\) of \(16 ; 15 \leq \frac{1}{2}\) of 40 ; so an estimate is 15 \\
\hline Early 8 & Use a proportional approach e.g., \\
or higher & - Equivalent fractions or ratios e.g., \(\frac{6}{16}=\frac{3}{8} ; \frac{3}{8} \times 40=15\) or \\
& \(40: 16=20: 8=10: 4=5: 2 ;(10+5):(4+2)=15: 6\) so the answer is 15 or \\
& \(40: 16=20: 8=15: 6\) (using \(\frac{3}{4}\) of 20 and \(\frac{3}{4}\) of 8\()\) so the answer is 15 or \\
& \(40: 16(8\) as a factor) \(=5: 2=15: 6\) so the answer is 15
\end{tabular}

\section*{INTERVIEW 3 TASK 22}

\section*{Mei-ling saved \$40 in 16 weeks.}

She saved the same amount each week.


How much had she saved after 6 weeks?

MINISTRYOFEDUCATION
Te Tähuhu o te Mātauranga

\section*{GLळS INTERVIEW 4}

\section*{TASK 1}

ACTION: Place 6 counters of the same colour on the table.
SAY: How many counters are there?
\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline 0 & Student cannot count 6 objects \\
\hline 1 & Correctly counts the 6 objects \\
\hline
\end{tabular}

DECISION: If " 1 " is circled in Task 1, CONTINUE the interview.
If " 0 " is circled, rate the student at Stage 0 and STOP the interview

\section*{TASK 2}

SAY: Please hold out your hands for me.
SAY: Here are 3 counters.
SAY: Here are another 4 counters.

SAY: How many counters have you got altogether?

ACTION: Place 3 counters in the student's hand.
ACTION: Place 4 counters in their other hand.
ACTION: Close the student's hands to encourage imaging.
ACTION: Allow the student to open their hands if they find imaging difficult.
\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline 1 & Cannot solve the addition problem (Stage 1) \\
\hline \(2-3\) & \begin{tabular}{l} 
Physically counts all the objects from 1 on materials (Stage 2) \\
Correctly counts all the items from 1 by imaging (Stage 3)
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Counts on e.g., 4, 5, 6, 7 or 5, 6, 7 \\
Knows 3 + 4
\end{tabular} \\
\hline or higher "4" are circled in Task 2, CONTINUE the interview. \\
DECISION: & \begin{tabular}{l} 
If either "2-3" or "4" \\
If "1" is circled, STOP the interview. If in any doubt, CONTINUE the interview.
\end{tabular} \\
\hline
\end{tabular}

INTERVIEW 4 TASK 2

\section*{\(3+4=\square\)}

\section*{INTERVIEW 4 TASIK 3}
\(8+7=\square\)

\section*{TASK 3}

ACTION: Place 8 counters under a card then place 7 under another card.
SAY: Here are 8 counters, and here are 7 counters.
\(8+7=\square\)
How many counters are there altogether?
\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline 3 & \begin{tabular}{l} 
Cannot solve the problem (After removing the cards - Stage 1) \\
Counts all objects from 1 on materials (Stage 2) e.g., 1, 2, 3, .., 15 \\
Counts all objects from 1 by imaging (Stage 3) e.g., 1, 2, 3, \(\ldots, 15\)
\end{tabular} \\
\hline 4 & Counts on (Stage 4) e.g., 9, 10, 11, .., 14, 15 or 8, 9, 10, .., 14, 15 \\
\hline \begin{tabular}{c} 
Early 5 \\
or higher
\end{tabular} & \begin{tabular}{l} 
Uses a part-whole strategy e.g., \\
- \\
\\
\\
\hline
\end{tabular} \begin{tabular}{l} 
- Making to ten e.g., \(8+2=10 ; 10+5=15\) \\
- Addition fact e.g., \(8+7=15\)
\end{tabular} \\
\hline
\end{tabular}

\section*{TASK 4}
```

NTERVIEW 4TASK4
There are 5 motorbikes in each row.
There are 5 rows of motorbikes,
< A: A: A: S: \

```


```

\& A S: A: S: S
\& \therefore \therefore : A: A: \therefore
How many motorbikes are there altogether?

```

SAY: There are 5 motorbikes in each row.
SAY: There are 5 rows of motorbikes.
SAY: How many motorbikes are there altogether?

ACTION: Sweep one row with your finger
ACTION: Point to each row one by one
\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline 3 & Cannot solve the problem \\
& \begin{tabular}{c} 
Counts all objects from 1 on materials (Stage 2) e.g., 1, 2, 3, 4, 5, 6, .., 25 \\
\\
Counts all objects from \(\mathbf{1}\) by imaging (Stage 3) e.g., 1, \(2,3,4,5,6, \ldots, \mathbf{2 5}\)
\end{tabular} \\
\hline 4 & Skip counting (Stage 4) e.g., 5, 10, 15, 20, 25 \\
\hline Early 5 & Uses an additive or multiplicative strategy e.g., \\
or higher & - Repeat addition e.g., \(5+5+5+5+5=25\) \\
& - Additive strategies e.g., \(5+5=10 ; 10+10=20 ; 20+5=25\) \\
& - Multiplication strategies e.g., \(4 \times 5=20 ; 20+5=25\) \\
& - Multiplication fact e.g., \(5 \times 5=25\)
\end{tabular}

There are 5 motorbikes in each row. There are 5 rows of motorbikes.


How many motorbikes are there altogether?

INTERVIEW 4 TASK 5
You have 12 lollipops for your party. A quarter of the lollipops are lemon.


How many lemon lollipops are there?

\section*{TASK 5}

ACTION: Provide 12 counters (Iollipops).
Allow the student access to these counters if necessary.
SAY: You have 12 lollipops for your party.
A quarter of the lollipops are lemon.
How many lemon lollipops are there?
Note: Say "fourth" instead of "quarter" if this is more familiar to your student.
\begin{tabular}{|c|c|}
\hline Stage & Strategy observed \\
\hline 2-4 & \begin{tabular}{l}
Cannot solve the problem \\
Equally shares the lollipops, on materials or by imaging (Stage 2-4)
\end{tabular} \\
\hline Early 5 or higher & \begin{tabular}{l}
Uses an additive or multiplicative strategy e.g., \\
- Additive partitioning e.g., \(6+6=12\) and \(3+3+3+3=12\) \\
- Multiplication or division strategy e.g., \(3 \times 3=9 ; 9+3=12\) \\
- Multiplication or division fact e.g., \(4 \times 3=12\) or \(12 \div 4=3\)
\end{tabular} \\
\hline
\end{tabular}

DECISION: If any "E5" are circled in Tasks 3, \(\mathbf{4}\) or \(\mathbf{5}\), or if the " 4 s " are circled in both Task \(\mathbf{3}\) and Task 4,CONTINUE the interview.
Otherwise STOP the interview. If in any doubt, CONTINUE the interview.

\section*{TASK 6}

SAY: Janine has \(\$ 49\) in her piggy bank. She gets \(\$ 27\) for her birthday. How much money has Janine got now?

\begin{tabular}{|c|c|}
\hline Stage & Strategy observed \\
\hline Early 5 & \begin{tabular}{l}
Cannot solve the problem or Uses an earlier numeracy stage \\
Counting on (Stage 4) e.g., 49, 50, 51, ... , 76 \\
Skip counting in tens and ones (Stage 4) e.g., [49] 59, 69, 70, 71, ..., 76 \\
Repeat addition in tens and ones (Stage E5) e.g.,
\[
49+10=59 ; 59+10=69 ; 70,71, \ldots, 76
\] \\
Mix of counting and part-whole strategies (Stage E5) e.g.,
\[
\text { [49] 59, 69; } 69+1=70 ; 70+6
\]
\end{tabular} \\
\hline \[
\begin{gathered}
\mathbf{5} \\
\text { or higher }
\end{gathered}
\] & \begin{tabular}{l}
Uses a part-whole strategy e.g., \\
- Place value partitioning e.g., \((40+20)+(9+7)=76\) \\
- Adding on in parts e.g., \(49+20=69 ; 69+1+6=76\) or \(40+27=67 ; 67+9=76\) \\
- Making to ten e.g., \(49+27=(49+1)+(27-1)=50+26=76\)
\end{tabular} \\
\hline
\end{tabular}

Janine has \(\$ 49\) in her piggy bank. She gets \(\mathbf{\$ 2 7}\) for her birthday.


How much money has Janine got now?

INTERVIEW 4 TASK 7

There are 110 students at a sports tournament. There are 10 students in each team.


How many teams are there?

\section*{TASK 7}

SAY: There are 110 students at a sports tournament.
There are 10 students in each team.
How many teams are there?

\begin{tabular}{|c|c|}
\hline Stage & Strategy observed \\
\hline Early 5 & \begin{tabular}{l}
Cannot solve the problem or Uses an earlier numeracy stage \\
Skip counting (Stage 4) e.g., 10, 20, 30, 40, ..., 110 \\
Repeated addition (Stage E5) e.g., \(10+10+10+10+\ldots+10=110\)
\end{tabular} \\
\hline \begin{tabular}{l}
5 \\
or higher
\end{tabular} & \begin{tabular}{l}
Uses an additive or multiplicative strategy e.g. \\
- Additive strategies e.g., \(10+10=20 ; 20+20=40 ; 40+40=80 ; 8+2+1=11\) \\
- Derive from multiplication facts e.g., \(10 \times 10=100 ; 100+10=110 ; 10+1=11\) \\
- Multiplication facts e.g., \(11 \times 10=110\) so the answer is 11
\end{tabular} \\
\hline
\end{tabular}

\section*{TASK 8}

SAY: There are 5 blue cars.
That is one-quarter of the cars.
How many cars are there altogether?

Note: Say "fourth" instead of "quarter" if this is more familiar to your student
\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline Early 5 & Cannot solve the problem or Uses an earlier numeracy stage \\
& Counting strategy (Stage 2-4) e.g., 1, 2, 3, 4, 5, 6, \(\ldots, \mathbf{1 0}, 11, \ldots, \mathbf{1 5}, 16, \ldots, \mathbf{2 0}\) \\
\hline 5 & Uses an addition or multiplication strategy e.g., \\
or higher & - Additive strategies e.g., \(5+5=10 ; 10+5=15 ; 15+5=20\) \\
& - Multiplication facts e.g., \(5 \times 4=20\) or \(20 \div 4=5\)
\end{tabular}

DECISION: If any " 5 " are circled in Tasks 6, 7 or 8, CONTINUE the interview. If only "E5" are circled, STOP the interview. If in any doubt, CONTINUE the interview.

There are 5 blue cars.
That is one-quarter \(\left(\frac{1}{4}\right)\) of the cars.


How many cars are there altogether?

INTERVIEW 4 TASK 9
147 lambs had already been born.
Another 36 lambs were born.


How many lambs were there altogether?

\section*{TASK 9}

SAY: 147 lambs had already been born.
Another 36 lambs were born.
How many lambs were there altogether?


How many lambs were there altogether?
\begin{tabular}{|c|c|}
\hline Stage & Strategy observed \\
\hline 5 & \begin{tabular}{l}
Cannot solve the problem or Uses an earlier numeracy stage \\
Skip counting in tens and ones (Stage 4) e.g., [147] 157, 167, 177, 178, 179, ..., 183 \\
Repeat addition in tens and ones (Stage E5) e.g.,
\[
147+10+10+10+1+1+\ldots+1=183
\] \\
Mix of counting and part-whole strategies (Stage E5) e.g.,
\[
147+10+10+10=177 ; 177+3+3=183
\] \\
Attempts part-whole strategy with error (Stage E5) e.g., 173 (no carrying)
\end{tabular} \\
\hline Early 6 or higher & \begin{tabular}{l}
Uses a part-whole strategy e.g., \\
- Place value partitioning e.g., \((140+30)+(7+6)=170+13=183\) \\
- Adding on in parts e.g., \(147+30=177 ; 177+3+3=183\) or \(140+36=176 ; 176+4+3=183\)
\end{tabular} \\
\hline
\end{tabular}

\section*{TASK 10}

\section*{interview 4 Task 10 \\ You have 60 chairs to put around some tables.} 5 chairs fit around each table.


How many tables do you need?
\begin{tabular}{|c|c|}
\hline Stage & Strategy observed \\
\hline 5 & \begin{tabular}{l}
Cannot solve the problem or Uses an earlier numeracy stage \\
Uses an additive strategy e.g., \\
- Skip counting (Stage 4) e.g., \(5,10,15,20,25, \ldots, 60\) or \(60,55,50, \ldots, 5\) \\
- Repeated addition (Stage E5) e.g., \(5+5+5+\ldots+5=60\) \\
- Doubling additively (Stage 5) e.g., \(5+5=10 ; 10+10=20 ; 20+20+20=60\)
\end{tabular} \\
\hline Early 6 or higher & \begin{tabular}{l}
Uses a multiplicative strategy e.g., \\
- Doubling and halving e.g., \(6 \times 10=60 ; 12 \times 5=60\) so the answer is 12 \\
- Derives from multiplication facts e.g., \(10 \times 5=50 ; 2 \times 5=10 ; 10+2=12\) \\
- Multiplication facts e.g., \(5 \times 12=60\) or \(60 \div 5=12\)
\end{tabular} \\
\hline
\end{tabular}

You have 60 chairs to put around some tables. 5 chairs fit around each table.


How many tables do you need?

INTERVIEW 4 TASIK 11


You cut a lamington into 4 equal pieces.
Then you cut each piece in half.


\section*{What fraction of the lamington are these smaller pieces?}

\section*{TASK 11}

SAY: You cut a lamington into 4 equal pieces.
Then you cut each piece in half.
What fraction of the lamington are these smaller pieces?

\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline 5 & \begin{tabular}{l} 
Cannot solve the problem OR Uses an earlier numeracy stage \\
Counting strategy (Stage 4) e.g., \(1,2,3, \ldots, 8\) so the pieces are eighths
\end{tabular} \\
\hline \begin{tabular}{c} 
Early 6 \\
or higher
\end{tabular} & \begin{tabular}{l} 
Uses an additive or multiplicative strategy e.g., \\
- Additive strategy e.g., \(2+2+2+2=8\), so these pieces are quarters, and the smaller \\
ones are eighths \\
- Multiplicative strategy e.g., \(4 \times 2=8\) so the pieces are eighths
\end{tabular} \\
\hline
\end{tabular}

DECISION: If any "E6" are circled in Tasks \(\mathbf{9}, \mathbf{1 0}\) or 11, CONTINUE the interview.
If only " 5 " are circled, STOP the interview. If in any doubt, CONTINUE the interview.

\section*{TASK 12}

SAY: There are 143 calves on the farm. 89 of the calves are in the shed.
How many calves are not in the shed?

\begin{tabular}{|c|c|}
\hline Stage & Strategy observed \\
\hline Early 6 & \begin{tabular}{l}
Cannot solve the problem or Uses an earlier numeracy stage Mix of counting and part-whole strategies (Stage E5) e.g., [89] 99, 109, \(\ldots, 139 ; 139+1=140 ; 140+3=143 ; 50+1+3\) \\
Attempts part-whole strategy with error (Stage 5) e.g., \(143-90=53 ; 53-1=52\) (compensates in the wrong direction)
\end{tabular} \\
\hline \[
\begin{gathered}
6 \\
\text { or higher }
\end{gathered}
\] & \begin{tabular}{l}
Uses a part-whole strategy e.g., \\
- Place value partitioning e.g., \((140-80)+(3-9)=60-6=54\) \\
- Reversibility e.g., \(89+1=90 ; 90+10=100 ; 100+43=143 ; 1+10+43=54\) \\
- Rounding and compensation e.g., \(143-90=53 ; 53+1=54\) \\
- Subtracting in parts e.g., \(143-80=63 ; 63-9=54\) \\
- Equal additions e.g., \(144-90=54\)
\end{tabular} \\
\hline
\end{tabular}

There are 143 calves on the farm. 89 of the calves are in the shed.


How many calves are not in the shed?

INTERVIEW 4 TASK 13


Each carton holds 24 cans of spaghetti.
There are 5 cartons.

How many cans of spaghetti is that?

\section*{TASK 13}

SAY: Each carton holds 24 cans of spaghetti.
There are 5 cartons.
How many cans of spaghetti is that?

\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline Early 6 & \begin{tabular}{l} 
Cannot solve the problem or Uses an earlier numeracy stage \\
\\
\\
\\
Uses an additive strategy e.g.,
\end{tabular} \\
\hline 6 & Doubling additively (Stage 5) e.g., \(24+24=48 ; 48+48=96 ; 96+24=120\) \\
\hline or higher & \begin{tabular}{l} 
Uses a multiplicative strategy e.g., \\
\\
\\
\\
\\
\\
\\
\\
\\
- Place value partitioning e.g., \(5 \times 24=(5 \times 20)+(5 \times 4)=100+20=120\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{TASK 14}

SAY: There are 8 swans on the lake.
The other two-thirds of the birds on the lake are ducks. How many ducks are there on the lake?

\begin{tabular}{|c|c|}
\hline Stage & Strategy observed \\
\hline Early 6 & Cannot solve the problem or Uses an earlier numeracy stage Uses additive strategies only (Stage 5) e.g., \(8+8+8=24\) so 24 birds in total; \(8+8=16\) \\
\hline \[
\begin{gathered}
6 \\
\text { or higher }
\end{gathered}
\] & Uses multiplicative strategies e.g., \(3 \times 8=24\) so 24 birds in total then multiplies (or adds) to get i.e., \(2 \times 8=16\) [or \(8+8=16]\) or
\[
1-\frac{2}{3}=\frac{1}{3} ; \frac{1}{3}=8 ; \frac{2}{3}=2 \times 8=16
\] \\
\hline
\end{tabular}

DECISION: If any " 6 " are circled in Tasks \(\mathbf{1 2}, \mathbf{1 3}\) or \(\mathbf{1 4}\), CONTINUE the interview. If only "E6" are circled, STOP the interview. If in any doubt, CONTINUE the interview.

There are 8 swans on the lake.
The other two-thirds \(\left(\frac{2}{3}\right)\) of the birds on the lake are ducks.


How many ducks are there on the lake?

\section*{INTERVIEW 4 TASK 15}

Tony was 0.8 metres tall. Three years later he was 1.25 metres tall.


How much had he grown?

\section*{TASK 15}

SAY: Tony was 0.8 metres tall.
Three years later he was 1.25 metres tall.
How much had he grown?

\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline 6 & Cannot solve the problem or Uses an earlier numeracy stage \\
& Misunderstands decimal place value (Stage 6\()\) e.g., \\
& - Ignores the decimal points e.g., \(125-8=117\) or \\
& \(125-80=45\) [Check to see if they self-correct to 0.45 or 45 cm then code as "E7"] \\
& - Treats numbers after the decimal as whole numbers e.g., \(1.25-0.8\) " \(=\) " 1.17 \\
\hline Early 7 & Uses part-whole strategies with decimal place value understanding e.g., \\
or higher & - Place value partitioning e.g., \((1.2-0.8)+(0.05-0)=0.4+0.05=0.45\) \\
& - Making to ones e.g., \(0.8+0.2=1.0 ; 1.0+0.25=1.25 ; 0.2+0.25=0.45\) \\
& - Equal addition e.g., \(1.45-1.0=0.45\) \\
\hline
\end{tabular}

\section*{TASK 16}

SAY: Each barrel weighs 27 kilograms.
There are 7 barrels.
How much do the barrels weigh altogether?


How much do the barrels weigh altogether?
\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline 6 & \begin{tabular}{l} 
Cannot solve the problem or Uses an earlier numeracy stage \\
\\
\\
\\
\\
\\
Uses additive strategies (Stage 5) e.g., \\
\(27+27=54 ; 54+54=108 ; 108+108=216 ; 216-27=189\) \\
\\
\\
\\
Uses a mix of multiplicative and additive strategies (Stage 6) e.g., \\
\(20 \times 7=140 ; 140+7+7+7+7+7+7+7=189\)
\end{tabular} \\
\hline Early 7 & Uses a multiplicative strategy e.g., \\
or higher & - Place value partitioning with basic facts e.g., \((20 \times 7)+(7 \times 7)=140+49=189\) or \\
& \((7 \times 30)-(7 \times 3)=210-21=189\) \\
& - Derive from basic facts e.g., \((25 \times 4)+(25 \times 3)=175 ; 175+2 \times 7=189\) or \\
& \(10 \times 7=70\) so \(20 \times 7=140 ; 7 \times 5=35 ; 7 \times 2=14 ; 140+35+14=189\)
\end{tabular}

Each barrel weighs 27 kilograms. There are 7 barrels.


How much do the barrels weigh altogether?

INTERVIEW 4 TASK 17
Yani wants to make 23 jugs of juice for a party. Each jug of juice takes one-fifth ( \(\frac{1}{5}\) ) of a packet of powder to make.

\section*{TASK 17}

SAY: Yani wants to make 23 jugs of juice for a party.
Each jug of juice takes one-fifth of a packet of powder to make.
How many packets of powder does Yani need?
\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline 6 & \begin{tabular}{l} 
Cannot solve the problem or Uses an earlier numeracy stage \\
Uses additive strategies (Stage 5) e.g., \\
\(5+5+5+5=20\) so 4 packets make 20 jugs, 1 more sachet makes 25 jugs
\end{tabular} \\
& Uses a multiplicative strategy e.g., \\
\hline Early 7 higher & - Division with remainder e.g., \\
& \(23 \div 5=4 \mathrm{r} 3\), so 5 packets will make more than 23 jugs \\
& \(4 \times 5=20\), for 20 jugs, so 5 packets would be needed \\
& - Division with fraction e.g., \(23 \div 5=4 \mathrm{r} 3=4 \frac{3}{5}\); so need 5 packets \\
\hline
\end{tabular}

DECISION: If any "E7" are circled in Tasks 15, 16 or 17, CONTINUE the interview. If only " 6 " are circled, STOP the interview. If in any doubt, CONTINUE the interview.

\section*{TASK 18}

SAY: One plant is 0.67 metres tall and the other is 0.9 metres tall. Which one is taller and by how much (in metres)?
interview 4 task 18
One plant is 0.67 metres tall and the other is 0.9 metres tall.


Which one is taller and by how much (in metres)?
\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline Early 7 & Cannot solve the problem or Uses an earlier numeracy stage \\
& Misunderstands decimal place value (Stage 6) e.g., \\
& - Ignores the decimal points e.g., \(67-9=58\) \\
& - Treats numbers after the decimal as whole numbers e.g., \\
& \(0.9-0.67\) " \(=\) " \(0.67-0.9\) " \(=\) " 0.58 \\
\hline \multirow{7}{*}{ or higher } & Uses part-whole strategies with decimal place value understanding e.g., \\
& - Place value partitioning e.g., \((0.9-0.6)+(0.00-0.07)=0.3-0.07=0.23\) \\
& - Making to tenths e.g., \(0.67+0.03=0.7 ; 0.7+0.2=0.9 ; 0.03+0.2=0.23\) \\
& - Subtracting in parts e.g., \(0.9-0.6=0.3 ; 0.3-0.07=0.23\) \\
& - Equal addition e.g., \(0.9-0.67=0.93-0.7=0.23\) \\
\hline
\end{tabular}

One plant is 0.67 metres tall and the other is 0.9 metres tall.


Which one is taller and by how much (in metres)?

\section*{INTERVIEW 4 TASK 19}

There are 330 children wanting to play rugby. Each team has 15 players.


How many teams will there be?

\section*{TASK 19}

SAY: There are 330 children wanting to play rugby.
Each team has 15 players.
How many teams will there be?


How many teams will there be?
\begin{tabular}{c|l}
\hline Stage & Strategy observed \\
\hline Early 7 & \begin{tabular}{l} 
Cannot solve the problem or Uses an earlier numeracy stage \\
\\
\\
\\
Uses a mix of multiplicative and additive strategies (Stage 6) e.g., \\
\(15+15=30 ; 30 \times 10=300 ; 300+30=330 ; 20+2=22\)
\end{tabular} \\
\hline 7 & Uses multiplicative strategies e.g., \\
or higher & - Partitioning e.g., \(330 \div 15=330 \div(3 \times 5) ; 330 \div 3=110 ; 110 \div 5=22\) \\
& - Doubling e.g., \(330 \div 15=660 \div 30=22\) \\
& - Basic facts with adjustment e.g., \(33 \div 3=11\) so \(330 \div 30=11 ; 11 \times 2=22\) or \\
& \(2 \times 15=30 ; 20 \times 15=300 ; 20+2=22\)
\end{tabular}

\section*{TASK 20}

SAY: You put three-quarters of a cup of powder in each load of washing. There are 6 loads to do.
How much powder do you need?


Note: Say "three-fourths" instead of "three-quarters" if this is more familiar to your student.
\begin{tabular}{c|l}
\hline Stage & Strategy \\
\hline Early 7 & Cannot solve the problem or Uses an earlier numeracy stage \\
\hline 7 & Uses an additive strategy e.g., \(\frac{3}{4}+\frac{3}{4}=1 \frac{1}{2}, 1 \frac{1}{2}+1 \frac{1}{2}=3,3+1 \frac{1}{2}=4 \frac{1}{2}\) \\
or higher & Uses a multiplicative strategy e.g., \(6 \times \frac{3}{4}=(6 \times 3) \div 4=\frac{18}{4}=4 \frac{1}{2}\) or \\
& \(\frac{1}{4}\) of \(6=\frac{6}{4}=1 \frac{1}{2} ; 1 \frac{1}{2} \times 3=4 \frac{1}{2}\) \\
\hline
\end{tabular}

DECISION: If any "7" are circled in Tasks 18, 19 or 20, CONTINUE the interview. If only "E7" are circled, STOP the interview. If in any doubt, CONTINUE the interview.

You put three-quarters ( \(\frac{3}{4}\) ) of a cup of powder in each load of washing.
There are 6 loads to do.


How much powder do you need?

\section*{INTERVIEW 4 TASK 21}

Ron has to drive 18.5 kilometres to meet his friend. He gets a flat tyre after \(\frac{1}{5}\) of the trip.


How far did he drive before he got a flat tyre?

\section*{TASK 21}

SAY: Ron has to drive 18.5 kilometres to meet his friend. He gets a flat tyre after one-fifth of the trip. How far did he drive before he got a flat tyre?


How far did he drive before he got a flat tyre?
\begin{tabular}{|c|c|}
\hline Stage & Strategy observed \\
\hline 7 & Cannot solve the problem or Uses an earlier numeracy stage Attempts multiplication strategy (Stage 6) e.g., \(5 \times 3=15\) and \(5 \times 4=20\) so the answer is between 3 and 4 (and over 3.5) \\
\hline Early 8 or higher & \begin{tabular}{l}
Uses multiplication strategies e.g., \\
- Uses decimal equivalent e.g., \(\frac{1}{5}=0.2 ; 2 \times 18.5=37\) so \(0.2 \times 18.5=3.7\) \\
- Rounds and compensates e.g.,
\[
\begin{aligned}
& 20 \div 5=4 ; 1.5 \div 5=0.3 \text { so } 18.5 \div 5=4-0.3=3.7 \text { or } \\
& 18 \div 5=3 \text { r } 3=3 \frac{3}{5}=3.6 ; \frac{1}{5} \times 0.5=0.1 ; 3.6+0.1=3.7
\end{aligned}
\] \\
- Interpolates between known facts e.g., \(5 \times 3=15\) and \(5 \times 4=20 ; 18.5\) is \(3.5 \div 5=\frac{7}{10}=\) 0.7 of the way between 15 and 20 , so the answer is 3.7 \\
- Fractional multiplication, e.g., \(18.5=18 \frac{1}{2}=\frac{37}{2} ; \frac{37}{2} \times \frac{1}{5}=\frac{37}{10}=3 \frac{7}{10}(=3.7)\) \\
- Doubling and halving, e.g., \(18.5 \times 2=37 ; \frac{1}{5} \div 2=\frac{1}{10} ; 37 \times \frac{1}{10}=3.7\)
\end{tabular} \\
\hline
\end{tabular}

\section*{TASK 22}

SAY: It takes Arana 6 hours to service 14 cars.
Each car takes the same time to service.
How long will it take him to service 21 cars?
\begin{tabular}{|c|c|}
\hline Stage & Strategy observed \\
\hline 7 & \begin{tabular}{l}
Cannot solve the problem or Uses an earlier numeracy stage Uses inappropriate additive strategy (Stage 5) e.g.,
\[
14+7=21 ; 6+7=13 \text { or } 14-8=6 ; 21-8=13
\] \\
Uses estimation (Stage 6/7) e.g., \\
Half of 14 is \(7 ; 6\) is less than half of \(14 ; 9\) or 10 is less than half of 21
\end{tabular} \\
\hline Early 8 or higher & \begin{tabular}{l}
Uses a proportional approach e.g., \\
- Multiplicative strategies e.g., \(14 \times 1.5=21 ; 6 \times 1.5=9\) \\
- Unitising e.g., 6 cars take 14 hours so 1 car takes \(\frac{6}{14}\) hour \(=\frac{3}{7}\) hour; \(\frac{3}{7}\) of \(21=9\) \\
- Equivalent fractions or ratios e.g., \(14: 21=2: 3=6: 9\) so the answer is 9 or \(6: 14=3: 7=6: 9\) so the answer is 9
\end{tabular} \\
\hline
\end{tabular}

Stop the interview

It takes Arana 6 hours to service 14 cars. Each car takes the same time to service.


How long will it take him to service 21 cars?

\section*{Individual Knowledge Assessment of Number (IKAN)}

IKAN is an assessment tool to be used to assess a student's knowledge stage on the Number Framework. It has been developed as an alternative to using the knowledge section of the diagnostic interview (NumPA). The knowledge stages describe key items of knowledge which students need to know and be able to quickly recall without needing to strategize. This assessment is suitable for students in years 3 to 8 who are at the Advanced Counting stage, numeracy stage 4 , or higher. Teachers may use this assessment with all of their students or they may choose to use this assessment for those students whom they require more knowledge information about.

The assessment has been divided into five parts. Each part assesses the four knowledge domains. - Number Sequence and Order, Fractions, Place Value, and Basic Facts.
\begin{tabular}{lll} 
Part One: & Advanced Counting & AC (Stage 4) \\
Part Two: & Early Additive & EA (Stage 5) \\
Part Three: & Advanced Additive & AA (Stage 6) \\
Part Four: & Advanced Multiplicative & AM (Stage 7) \\
Part Five: & Advanced Proportional & AP (Stage 8)
\end{tabular}

It is recommended that different versions of IKAN are used within a school year to ensure that students do not become familiar with the questions. Each student will need a copy of the answer sheet attached to this document. The answer sheet has been broken into the four knowledge domains.

The on-line IKAN automatically times the exposure students have to each item. The time allocated for tasks has been altered depending upon the demands of each domain. Once the power point show is started the teacher needs to read each item as it appears including reading the numbers.
Note: Students at stages 7 and 8 may start the IKAN at part three.
Students can opt out of the assessment when they reach a point where they feel that they are unable to answer any more questions. It would be beneficial that students continue through the parts as they may have strength in a knowledge domain which will be evident when marking the assessment horizontally (see marking assessment section below). It is recommended that students have an independent activity available to continue with if they stop the assessment.

\section*{Marking the IKAN}

The teacher marks all the questions at the end of the power point. The IKAN can be marked horizontally by individual domains and vertically for a knowledge stage.

Horizontally: Record the last stage where the student got all the questions correct. Each of the knowledge domains requires an identified stage. Strengths and weaknesses within these domains can easily be identified for teaching and learning purposes (refer to the student answer sheet example below).

Vertically: Record the total number of questions that the student answered correctly at the bottom of the column. Highlight the last stage where the student got all the questions correct (refer to the student answer sheet example below). This information may be used for collation of school wide knowledge data. It is not recommended that vertical analysis is used for classroom practice.

NB: The IKAN does not assess all the knowledge for each stage; it is a representative example only.
All aspects of knowledge need to be covered (refer to the Number Framework).
The knowledge domains align with the information obtained from using NumPA (Numeracy Project Assessment).See www.nzmaths.co.nz for more information about the NumPA assessment interview.

AA
\(\approx \approx \approx\)
minISTRY OF EDUCATION
7. Thathe el Muharange

Student Answer Sheet - IKAN
IKAN 1 IKAN 2 IKAN 3 IKAN 4 (Circle the form used)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Student Name:} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Year Level: \(\qquad\) \(\begin{array}{lll}\text { Stage 5 } 4 & \begin{array}{l}\text { Stage 6 } \\ \text { Early Additive }\end{array} & \text { Advanced Additive }\end{array}\)}} & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{l}
Stage 8 \\
Advanced Proportional
\end{tabular}}} \\
\hline & & & & \begin{tabular}{l}
Stage 7 \\
Advanced Multiplicative
\end{tabular} & & \\
\hline Domain & Part One & Part Two & Part Three & Part Four & Part Five & Stage \\
\hline Number Sequence and Order & \begin{tabular}{l}
1. 56 \\
2. 29
\end{tabular} & \begin{tabular}{l}
1. 600 \\
2. 999
\end{tabular} & \begin{tabular}{l}
1. 440000 \\
2. 801099
\end{tabular} & 1.
2. &  & \[
5_{E A}^{5}
\] \\
\hline Fractions & \begin{tabular}{l}
3.
\[
\frac{1}{2}
\] \\
4. \(\qquad\)
\end{tabular} & \begin{tabular}{l}
3. \\
4. \\
\(\frac{1}{4} \frac{2}{4} \frac{3}{4}\)
\end{tabular} & \begin{tabular}{l}
3.
\[
\frac{1}{3} \frac{1}{6} 1 / 7
\] \\
4.
\[
41 / 5
\]
\end{tabular} & \begin{tabular}{l}
3. \\
4.
\end{tabular} & \begin{tabular}{l}
1. \\
2.
\end{tabular} & 4
\(A C\) \\
\hline \begin{tabular}{l}
Place \\
Value
\end{tabular} & 5. & 5. & 5. & \[
5
\] & \[
3 .
\] & 4 \\
\hline & 6.
\[
90
\] & 6.
\[
490
\] & 6. & 6. & 4. & \(A C\) \\
\hline \begin{tabular}{l}
Basic \\
Facts
\end{tabular} & \begin{tabular}{l}
7. \\
8.
\end{tabular} & \begin{tabular}{l}
7. 16 \\
8. 35
\end{tabular} & \begin{tabular}{l}
7. \\
8.
\[
42
\]
\end{tabular} & \begin{tabular}{l}
7. \\
8.
\end{tabular} & \begin{tabular}{l}
5. \\
6 \\
7. \\
8.
\end{tabular} & \begin{tabular}{l}
6 \\
A.
\end{tabular} \\
\hline Total & \[
8
\] & \[
6
\] & 3 & & & \\
\hline
\end{tabular}

Copyright ©Crown 2010. Note: Teachers may copy this resource for educational purposes.

\section*{Mathematics Number Knowledge Grade Level Expectations (IKAN)}

End of Kindergarten Number Knowledge Expectations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Counting interview} & \multicolumn{5}{|c|}{Written Assessment} \\
\hline NO PARTS MASTERED & FNWS/BNWS COUNTING MASTERED, BUT R\&S NOT MASTERED & FNWS/BNWS
R\&S 20 & FNWS/BNWS
R\&S 120 & \[
\begin{gathered}
\text { FNWS/BNWS } \\
\text { R\&S } 1000
\end{gathered}
\] & Stage 4 AC & \begin{tabular}{l}
Stage 5 \\
EA
\end{tabular} & \begin{tabular}{l}
Stage 6 \\
AA
\end{tabular} & \begin{tabular}{l}
Stage 7 \\
AM
\end{tabular} & \[
\begin{gathered}
\text { Stage } 8 \\
\text { AP }
\end{gathered}
\] \\
\hline At Risk & Cause for Concern & \multicolumn{2}{|l|}{Achieving at or above expectations} & & \multicolumn{5}{|c|}{High Achievers} \\
\hline
\end{tabular}

End of \(1^{\text {st }}\) Grade Number Knowledge Expectations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Counting interview} & \multicolumn{5}{|c|}{Written Assessment} \\
\hline NO PARTS MASTERED & FNWS/BNWS COUNTING MASTERED, BUT R\&S NOT MASTERED & FNWS/BNWS R\&S 20 & \begin{tabular}{l}
FNWS/BNWS \\
R\&S 120
\end{tabular} & \begin{tabular}{l}
FNWS/BNWS \\
R\&S 1000
\end{tabular} & Stage 4 AC & Stage 5 EA & Stage 6 AA & \begin{tabular}{l}
Stage 7 \\
AM
\end{tabular} & \[
\begin{gathered}
\text { Stage } 8 \\
\text { AP }
\end{gathered}
\] \\
\hline \multicolumn{2}{|c|}{At Risk} & Cause for Concern & \multicolumn{2}{|l|}{Achieving at or above expectations} & \multicolumn{5}{|c|}{High Achievers} \\
\hline
\end{tabular}

End of \(\mathbf{2}^{\text {nd }}\) Grade Number Knowledge Expectations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Counting interview} & \multicolumn{5}{|c|}{Written Assessment} \\
\hline NO PARTS MASTERED & \begin{tabular}{l}
FNWS/BNWS COUNTING \\
MASTERED, BUT R\&S NOT MASTERED
\end{tabular} & FNWS/BNWS R\&S 20 & \begin{tabular}{l}
FNWS/BNWS \\
R\&S 120
\end{tabular} & FNWS/BNWS
R\&S 1000 & \[
\text { Stage } 4
\]
AC & Stage 5 EA & Stage 6 AA & \begin{tabular}{l}
Stage 7 \\
AM
\end{tabular} & \[
\begin{gathered}
\text { Stage } 8 \\
\text { AP }
\end{gathered}
\] \\
\hline \multicolumn{3}{|c|}{At Risk} & Cause for Concern & \multicolumn{2}{|l|}{Achieving at or above expectations} & \multicolumn{4}{|c|}{High Achievers} \\
\hline
\end{tabular}

End of \(3^{\text {rd }}\) Grade Number Knowledge Expectations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Counting interview} & \multicolumn{5}{|c|}{Written Assessment} \\
\hline NO PARTS MASTERED & \begin{tabular}{l}
FNWS/BNWS COUNTING \\
MASTERED, BUT R\&S NOT MASTERED
\end{tabular} & FNWS/BNWS R\&S 20 & FNWS/BNWS R\&S 120 & FNWS/BNWS
R\&S 1000 & Stage 4 AC & Stage 5 EA & \begin{tabular}{l}
Stage 6 \\
AA
\end{tabular} & \[
\begin{gathered}
\text { Stage } 7 \\
\text { AM }
\end{gathered}
\] & \[
\begin{gathered}
\text { Stage } 8 \\
\text { AP }
\end{gathered}
\] \\
\hline \multicolumn{4}{|c|}{At Risk} & Cause for Concern & Achievin expe & above ns & & h Achiev & \\
\hline
\end{tabular}

End of \(4^{\text {th }}\) Grade Number Knowledge Expectations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Counting interview} & \multicolumn{5}{|c|}{Written Assessment} \\
\hline NO PARTS MASTERED & \begin{tabular}{l}
FNWS/BNWS COUNTING \\
MASTERED, BUT R\&S NOT MASTERED
\end{tabular} & FNWS/BNWS R\&S 20 & FNWS/BNWS
R\&S 120 & FNWS/BNWS
R\&S 1000 & Stage 4 AC & Stage 5 EA & Stage 6 AA & Stage 7 AM & \[
\begin{gathered}
\text { Stage } 8 \\
\text { AP }
\end{gathered}
\] \\
\hline \multicolumn{5}{|c|}{At Risk} & Cause for Concern & \multicolumn{2}{|l|}{Achieving at or above expectations} & \multicolumn{2}{|l|}{High Achievers} \\
\hline
\end{tabular}

End of \(5^{\text {th }}\) Grade Number Knowledge Expectations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Counting interview} & \multicolumn{5}{|c|}{Written Assessment} \\
\hline NO PARTS MASTERED & \begin{tabular}{l}
FNWS/BNWS COUNTING \\
MASTERED, BUT R\&S NOT MASTERED
\end{tabular} & FNWS/BNWS R\&S 20 & FNWS/BNWS
R\&S 120 & FNWS/BNWS
R\&S 1000 & \begin{tabular}{l}
Stage 4 \\
AC
\end{tabular} & \begin{tabular}{l}
Stage 5 \\
EA
\end{tabular} & \[
\begin{gathered}
\text { Stage } 6 \\
\text { AA }
\end{gathered}
\] & \begin{tabular}{l}
Stage 7 \\
AM
\end{tabular} & \begin{tabular}{l}
Stage 8 \\
AP
\end{tabular} \\
\hline \multicolumn{5}{|c|}{At Risk} & \multicolumn{2}{|l|}{Cause for Concern} & \multicolumn{2}{|l|}{Achieving at or above expectations} & \begin{tabular}{l}
High \\
Achievers
\end{tabular} \\
\hline
\end{tabular}

End of \(6^{\text {th }}\) Grade Number Knowledge Expectations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Counting interview} & \multicolumn{5}{|c|}{Written Assessment} \\
\hline NO PARTS MASTERED & FNWS/BNWS COUNTING MASTERED, BUT R\&S NOT MASTERED & FNWS/BNWS R\&S 20 & \begin{tabular}{l}
FNWS/BNWS \\
R\&S 120
\end{tabular} & \begin{tabular}{l}
FNWS/BNWS \\
R\&S 1000
\end{tabular} & Stage 4 AC & Stage 5 EA & \[
\begin{gathered}
\text { Stage } 6 \\
\text { AA }
\end{gathered}
\] & \begin{tabular}{l}
Stage 7 \\
AM
\end{tabular} & \[
\begin{gathered}
\text { Stage } 8 \\
\text { AP }
\end{gathered}
\] \\
\hline \multicolumn{6}{|c|}{At Risk} & \multicolumn{2}{|l|}{Cause for Concern} & \multicolumn{2}{|l|}{Achieving at or above expectations} \\
\hline
\end{tabular}

End of \(7^{\text {th }}\) Grade Number Knowledge Expectations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Counting interview} & \multicolumn{5}{|c|}{Written Assessment} \\
\hline NO PARTS MASTERED & \begin{tabular}{l}
FNWS/BNWS COUNTING \\
MASTERED, BUT R\&S NOT MASTERED
\end{tabular} & FNWS/BNWS R\&S 20 & \begin{tabular}{l}
FNWS/BNWS \\
R\&S 120
\end{tabular} & \[
\begin{gathered}
\text { FNWS/BNWS } \\
\text { R\&S } 1000
\end{gathered}
\] & Stage 4 AC & Stage 5 EA & \[
\begin{gathered}
\text { Stage } 6 \\
\text { AA }
\end{gathered}
\] & \[
\begin{gathered}
\text { Stage } 7 \\
\text { AM }
\end{gathered}
\] & \[
\begin{gathered}
\text { Stage } 8 \\
\text { AP }
\end{gathered}
\] \\
\hline \multicolumn{7}{|c|}{At Risk} & \multicolumn{2}{|l|}{Cause for Concern} & Achieving at or above expectations \\
\hline
\end{tabular}
\({ }^{* * *}\) By the end of \(7^{\text {th }}\) grade students should have successfully completed through stage 8 of the IKAN***

\section*{Student Answer Sheet - IKAN}

IKAN 1 IKAN 2 IKAN 3 IKAN 4 (Circle the form used)
Student Name: \(\qquad\) Year Level: \(\qquad\) Date: \(\qquad\)


Copyright ©Crown 2010. Note: Teachers may copy this resource for educational purposes.

\section*{Answers for IKAN 1}
\begin{tabular}{|l|l|l|l|l|l|}
\hline & \begin{tabular}{l} 
IKAN 1 \\
Part 1
\end{tabular} & Part 2 & Part 3 & Part 4 & Part 5 \\
\hline \(\mathbf{1}\) & 50 & 600 & 440000 & 0.9 & \(3 / 4\) \\
\hline \(\mathbf{2}\) & 29 & 999 & 800999 & 2.084 & 0.6 \\
\hline \(\mathbf{3}\) & \(1 / 2\) & \(5 / 4\) & \(1 / 7,1 / 6,1 / 5\) & \(12 / 20\) & 607 or 607.3 \\
\hline \(\mathbf{4}\) & \(1 / 5\) & \(1 / 4,2 / 4,3 / 4\) & \(21 / 5\) & \(1 / 3\) & 4.75 \\
\hline \(\mathbf{5}\) & 8 & 83 or 83.2 & 536 or 536.05 & 6.5 & \(4 / 5\) \\
\hline \(\mathbf{6}\) & 90 & 490 & 58 & \begin{tabular}{l}
6457 or \\
6457.894
\end{tabular} & \(130 \%\) \\
\hline \(\mathbf{7}\) & 14 & & 7 & 7 & 18 \\
\hline \(\mathbf{8}\) & 9 & 35 & 42 & 42 & 12 \\
\hline
\end{tabular}

\section*{Answers for IKAN 2}
\begin{tabular}{|l|l|l|l|l|l|}
\hline & \begin{tabular}{l} 
IKAN 2 \\
Part 1
\end{tabular} & Part 2 & Part 3 & Part 4 & Part 5 \\
\hline \(\mathbf{1}\) & 90 & 900 & 650000 & 0.48 & \(7 / 10\) \\
\hline \(\mathbf{2}\) & 59 & 699 & 302999 & 6.175 & \(3 / 4\) \\
\hline \(\mathbf{3}\) & \(1 / 4\) & \(6 / 5\) & \(1 / 9,1 / 8,1 / 2\) & \(6 / 9\) & 208 or 208.1 \\
\hline \(\mathbf{4}\) & \(1 / 3\) & \(2 / 5,3 / 5,4 / 5\) & \(17 / 3\) & \(1 / 4\) & 7.35 \\
\hline \(\mathbf{5}\) & 7 & 93 or 93.5 & 148 or 148.7 & 3.4 & \(3 / 5\) \\
\hline \(\mathbf{6}\) & 60 & 560 & 62 & 725 or 725.106 & \(8.5 \%\) \\
\hline \(\mathbf{7}\) & 16 & 14 & 7 & 9 & 12 \\
\hline \(\mathbf{8}\) & 7 & 40 & 72 & 72 & 8 \\
\hline
\end{tabular}

\section*{Answers for IKAN 3}
\begin{tabular}{|l|l|l|l|l|l|}
\hline & \begin{tabular}{l} 
IKAN 3 \\
Part 1
\end{tabular} & Part 2 & Part 3 & Part 4 & Part 5 \\
\hline \(\mathbf{1}\) & 80 & 500 & 110000 & 0.83 & \(2 / 5\) \\
\hline \(\mathbf{2}\) & 39 & 899 & 701999 & 0.52 & \(59 \%\) \\
\hline \(\mathbf{3}\) & \(1 / 5\) & \(4 / 3\) & \(1 / 11,1 / 5,1 / 4\) & \(16 / 20\) & 205 or 205.3 \\
\hline \(\mathbf{4}\) & \(1 / 4\) & \(1 / 3,2 / 3,3 / 3\) & \(67 / 10\) & \(2 / 3\) & 2.55 \\
\hline \(\mathbf{5}\) & 10 & 48 or 48.1 & 509 or 509.05 & 2.9 & \(7 / 10\) \\
\hline \(\mathbf{6}\) & 80 & 790 & 83 & \begin{tabular}{l}
9050 or \\
9050
\end{tabular} & \(3.4 \%\) \\
\hline \(\mathbf{7}\) & 18 & 15 & 6 & 7 & 21 \\
\hline \(\mathbf{8}\) & 6 & 30 & 56 & 32 & 3 \\
\hline
\end{tabular}

\section*{Answers for IKAN 4}
\begin{tabular}{|l|l|l|l|l|l|}
\hline & \begin{tabular}{l} 
IKAN 4 \\
Part 1
\end{tabular} & Part 2 & Part 3 & Part 4 & Part 5 \\
\hline \(\mathbf{1}\) & 70 & 800 & 730000 & 0.55 & \(4 / 5\) \\
\hline \(\mathbf{2}\) & 89 & 599 & 603999 & 4.24 & \(3 / 5\) \\
\hline \(\mathbf{3}\) & \(1 / 3\) & \(3 / 2\) & \(1 / 7,1 / 6,1 / 3\) & \(3 / 5\) & 300 or 300.4 \\
\hline \(\mathbf{4}\) & \(1 / 2\) & \(1 / 5,3 / 5,4 / 5\) & \(14 / 4\) & \(5 / 8\) & 3.65 \\
\hline \(\mathbf{5}\) & 9 & 65.4 or 65 & 667 or 667.38 & 5.5 & \(2 / 5\) \\
\hline \(\mathbf{6}\) & 50 & 620 & 74 & 850 or 850.034 & \(102 \%\) \\
\hline \(\mathbf{7}\) & 12 & 15 & 6 & 8 & 28 \\
\hline \(\mathbf{8}\) & 9 & 45 & 48 & 54 & 4 \\
\hline
\end{tabular}

Questions and Answers for IKAN 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Part 1 & Part 2 & Part 3 & Part 4 & Part 5 \\
\hline 1 & What number is one more than 49? 50 & \begin{tabular}{l}
What number is one more 599? \\
600
\end{tabular} & What number is one more 439 999?
\[
440000
\] & Which decimal is the biggest, 0.639, 0.9, 0.84 ? 0.9 & Which fraction is the biggest, \(3 / 4,73 / 100,7 / 10\) ?
\[
3 / 4
\] \\
\hline 2 & What number is one less than 30? 29 & What number is one less than 1000? 999 & What number is one less than 801000 ? 800999 & Which decimal is the smallest, 2.4, 2.71, 2.084?
\[
2.084
\] & Which is the smallest?
\[
\begin{aligned}
& 2 / 3,0.6 \text { or } 70 \% \\
& 0.6
\end{aligned}
\] \\
\hline 3 & Write the fraction for one half. 1/2 & Write the fraction for five quarters. 5/4 & Write these fractions in order of size, smallest to biggest. 1/5, 1/7, 1/6 \(1 / 7,1 / 6,1 / 5\) & Which number is the same as \(3 / 5\) ? \(5 / 3,12 / 20\), \(12 / 3\) 4/6 12/20 & \begin{tabular}{l}
How many hundredths are in all of 6.073? \\
607 or 607.3
\end{tabular} \\
\hline 4 & Write the fraction for one fifth. \(1 / 5\) & Write these fractions in order of size, smallest to biggest. \(3 / 4,1 / 4,2 / 4\)
\[
1 / 4,2 / 4,3 / 4
\] & Write 4 and \(1 / 5\) as a fraction. 21/5 & Which fraction is the smallest, \(3 / 84 / 101 / 3\) ?
\[
1 / 3
\] & \begin{tabular}{l}
What number is half way between 4.8 and 4.7? \\
4.75
\end{tabular} \\
\hline 5 & How many tens are in 80? 8 & \begin{tabular}{l}
How many tens are in all of the number 832 ? \\
83 or 83.2
\end{tabular} & \begin{tabular}{l}
How many hundreds are in all of this number, 53 605? \\
536 or 536.05
\end{tabular} & Round the following decimal to the nearest tenth. \(6.49 \quad 6.5\) & What is the simplest fraction for 80\%? 4/5 \\
\hline 6 & What is the number for nine groups of ten? 90 & What is the number for 49 groups of ten? 490 & How many tenths are in all of the number, 5.8? 58 & \begin{tabular}{l}
How many thousands are in all of 6457894 ? \\
6457 or 6457.894
\end{tabular} & What is 1.3 written as a percentage? 130\% \\
\hline 7 & \(7+7=? 14\) & \(7+9=? 16\) & \(15-8=\) ? 7 & \(63 \div 9=\) ? 7 & What is the least common multiple of 6 and 9 ? 18 \\
\hline 8 & Half of 18 is ? 9 & \(5 \times 7=? 35\) & \(6 \times 7=\) ? 42 & What number divided by 7 gives 6? 42 & What is the highest common factor of 36 and 48? 12 \\
\hline
\end{tabular}

\section*{Answers for IKAN 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
IKAN 2 \\
Part 1
\end{tabular} & Part 2 & & Part 3 & & Part 4 & Part 5 \\
\hline 1 & \begin{tabular}{l}
What number is one more than 89 ? \\
90
\end{tabular} & What nu more 899? & \[
\begin{gathered}
\hline \text { er is one } \\
900
\end{gathered}
\] & \multicolumn{2}{|l|}{What number is one more 649 999?
\[
650000
\]} & Which d biggest, 0.48 & Which fraction is the biggest, \(2 / 3,7 / 10,3 / 5\) ? 7/10 \\
\hline 2 & What number is one less than 60? 59 & What nu than 700 & er is one less 699 & \multicolumn{2}{|l|}{\begin{tabular}{l}
What number is one less than 303000 ? \\
302999
\end{tabular}} & \begin{tabular}{l}
Which d smallest, 6.175? \\
6.175
\end{tabular} & \begin{tabular}{l}
Which is the smallest, \(3 / 4\), \(0.76,80 \%\) ? \\
3/4
\end{tabular} \\
\hline 3 & Write the fraction for one quarter. \(\mathbf{1 / 4}\) & Write th fifths. & raction for six 6/5 & \multicolumn{2}{|l|}{Write these fractions in order of size, smallest to biggest, \(1 / 21 / 9.1 / 8\).
\[
1 / 9,1 / 8,1 / 2
\]} & \begin{tabular}{l}
Which num same as 2/ \\
\(1 / 2 \quad 66 / 100\) \\
6/9
\end{tabular} & \begin{tabular}{l}
How many hundredths are in all of 2.081? \\
208 or 208.1
\end{tabular} \\
\hline 4 & Write the fraction for one third. 1/3 & Write the order of biggest. 2/5, 3/5, & fractions in smallest to 2/5, 4/5 & \multicolumn{2}{|l|}{Write \(5 \quad 2 / 3\) as a fraction. 17/3} & Which fra smallest, \(1 / 4\) & What number is half way between 7.3 and 7.4? 7.35 \\
\hline 5 & How many tens are in 70? 7 & \multicolumn{2}{|l|}{How many tens are in all of the number 935 ? 93 or 93.5} & \multicolumn{2}{|l|}{\begin{tabular}{l}
How many hundreds are in all of this number, 14870 ? \\
148 or 148.7
\end{tabular}} & Round th decimal to tenth. 3.37 & What is the simplest fraction for 60\%? 3/5 \\
\hline 6 & What is the number for six groups of ten? 60 & \multicolumn{2}{|l|}{What is the number for 56 groups of ten? 560} & \multicolumn{2}{|l|}{How many tenths are in all of the number, 6.2? 62} & How many are in all 725 or 725 & What is 0.085 written as a percentage? 8.5\% \\
\hline 7 & \(8+8=\) ? 16 & \(6+8=\) ? & 14 & 16-9 = ? & 7 & \(54 \div 6=\) ? & What is the least common multiple of 4 and 6? 12 \\
\hline 8 & Half of 14 is? 7 & \(8 \times 5=\) ? & 40 & \(9 \times 8=\) ? & 72 & What nu 8 gives 9 & What is the highest common factor of 24 and 32? 8 \\
\hline
\end{tabular}

\section*{Answers for IKAN 3}
\begin{tabular}{|l|l|l|l|l|l|}
\hline & \begin{tabular}{l} 
IKAN 3 \\
Part \(\mathbf{1}\)
\end{tabular} & & Part 2
\end{tabular}

\section*{Answers for IKAN 4}
\begin{tabular}{|l|l|l|l|l|l|}
\hline & \begin{tabular}{l} 
IKAN 4 \\
Part 1
\end{tabular} & Part 2
\end{tabular}

\section*{Counting Students (Interview)}
*for students scoring within Strategy Stage 0-3
Look for confusions between "teen" and "ty" numbers in questions (1), (3), and (7) to (9) and for "dropping back" to find the numbers after and before.
(1) Start counting from 1. Stop at 32.
\(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32\)
student must stop counting at (32) and not go beyond
(2) Count backwards from 10. Stop at 0.

10,9,8,7,6,5,4,3,2,1,0 student must say "zero"
(3) Count backwards from 23. Stop at 11.
\(23,22,21,20,19,18,17,16,15,14,13,12,11\) student must stop counting at (11) and not 90 beyond
Show each number (on card). For each number ask:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Questions: & (4) & (5) & (6) & (7) & (8) & (9) & (10) & (11) & (12) & (13) & (14) & (15) \\
\hline Show Card \# & 1 & 5 & 11 & 14 & 31 & 50 & 80 & 100 & 111 & 409 & 870 & 999 \\
\hline \begin{tabular}{c} 
What is this \\
Number?
\end{tabular} & & & & & & & & & & & & \\
\hline \begin{tabular}{c} 
What Number \\
comes after?
\end{tabular} & & & & & & & & & & & & \\
\hline \begin{tabular}{c} 
What number \\
comes before?
\end{tabular} & & & & & & & & & & & & \\
\hline
\end{tabular}
***record dates achieved FNWS/BNWS/R\&S in table below***
\begin{tabular}{|c|c|c|}
\hline (K) R\&S to 20 & (15 Grade) R\&S to 120 & ( \(2^{\text {nd }}\) Grade) R\&S to 1000 \\
\hline \begin{tabular}{l}
FNWS- \\
BNWS- \\
Number recognition toNumber after and before to-
\end{tabular} & \begin{tabular}{l}
Number recognition to- \\
Number after and before to-
\end{tabular} & \begin{tabular}{l}
Number recognition to- \\
Number after and before to-
\end{tabular} \\
\hline
\end{tabular}

FNWS/BNWS- Forward and Backward Number with Sequence
R\&S-recognition and Sequence
Adapted from nzmaths

Number Recognition and Sequence Cards
```

