A dissertation committee, chaired by the candidate's major professor, will be appointed. Within six months, the candidate, with guidance from the major professor, will satisfactorily complete an oral presentation and defense of a proposal for dissertation research to the committee. The research and dissertation preparation must be done under the close supervision of the committee and must include at least one full year of work performed under Idaho State University graduate faculty. The committee must formally approve the research proposal at least one-half year before the dissertation is submitted for approval.
Dissertation approval requires a public presentation of the dissertation and a satisfactory oral defense to the committee.
The student must meet all of the requirements of the Graduate School for the Master of Science degree. With the assistance of the graduate faculty of the College of Engineering, the student shall select an initial advisor during the first semester of residence to help in planning a program of studies and research. The student must also complete a Plan of Study and form a complete advisory committee by the time six credits of coursework have been completed.
| NS&E 601 | Nuclear Engineering Experiments |
3 cr
|
| NS&E 604 | Dynamics of Nuclear Systems |
3 cr
|
| NS&E 605 | Advanced Nuclear Engineering |
3 cr
|
| Approved Engineering Electives |
9 cr
|
|
| Approved Technical Electives |
6 cr
|
|
| ENGR 650 | Thesis |
6 cr
|
| ENGR 651 | Seminar |
2 cr
|
| M&CE 642 | Advanced Control Systems |
3 cr
|
| M&CE 643 | Advanced Measurement Methods |
3 cr
|
| M&CE 644 | Measurements and Controls Laboratory |
3 cr
|
| Approved Engineering Electives |
9 cr
|
|
| Approved Technical Electives |
6 cr
|
|
| ENGR 650 | Thesis |
6 cr
|
| ENGR 651 | Seminar |
2 cr
|
| CHEM 535 | Environmental Chemistry |
2 cr
|
| CHEM 537 | Environmental Chemistry Lab |
1 cr
|
| CE 510 | Intro to Environmental Engineering |
3 cr
|
| ENVE 611 | Treatment Systems for Environmental Remediation |
3 cr
|
| ME 519 | Energy System and Resources |
3 cr
|
| ENGR 521 | Advanced Engineering Analysis (Math) |
3 cr
|
| NS&E 544 | Nuclear Fuel Cycles |
3 cr
|
| ME 576 | Heat Transfer |
3 cr
|
| ENGR 578 | Probabilistic Design |
3 cr
|
| ENVE 504 | Engineering Risk Assessment |
3 cr
|
| ENVE 612 | Treatment of Hazardous Chemical Waste |
3 cr
|
| ENVE 614 | Hazardous Waste Site Remediation |
3 cr
|
| ENVE 615 | Water Quality Modeling and Control |
3 cr
|
| ENVE 616 | Biological Treatment of Wastewater |
3 cr
|
| NS&E 618 | Treatment of Low Level Radioactive Waste |
3 cr
|
| NS&E 619 | Treatment of High Level Radioactive Waste |
3 cr
|
Seminar (2 credits required)
The seminar course must be completed two times in order to satisfy the
requirement.
| ENGR 651 | Seminar |
1 cr (x2)
|
| ENGR 606 | Environmental Law and Regulation |
3 cr
|
| ENGR 607 | Hazardous Waste Management |
3 cr
|
| ENGR 610 | Introduction to Radioactive Waste Management |
3 cr
|
| BIOS 587 | Environmental Science and Pollutants |
3 cr
|
| BIOS 623 | Soil and Groundwater Bioremediation |
3 cr
|
| GEOL 520 | Principles of Geochemistry |
3 cr
|
| PSCI 621 | Biological Action of Chemicals |
3 cr
|
| PSCI 622 | Principles of Toxicology |
3 cr
|
| PHYS 605 | Radiological Environmental Monitoring & Surveillance |
3 cr
|
| ENGR 650 | Thesis |
6 cr
|
To qualify for the statement, "Hazardous Waste Management Option" on the transcript, at least nine credits must be completed from the following list of courses and the student must enroll, and participate, in the seminar, ENGR 655 at least twice.
| BIOS 587 | Environmental Science and Pollutants |
3 cr
|
| ENGR 570 | Survey of Hazardous Waste Management |
3 cr
|
| ENGR 606 | Environmental Law and Regulations |
3 cr
|
| ENGR 607 | Hazardous Waste Management |
3 cr
|
| ENVE 612 | Treatment of Hazardous Chemical Waste |
3 cr
|
| ENVE 614 | Hazardous Waste Site Remediation |
3 cr
|
| ENGR 655 | Hazardous Waste Management Seminar |
1 cr
|
ENGR 415 Model Theory 3 credits. Theory of design and testing of scaled models of engineering systems. Principles of dimensional analysis and their applications to design of physical models. The course considers true and distorted models, linear and non-linear models, and analogies. Some laboratory work required. PREREQ: ENGR 321 AND ENGR 309.
ME g416 Thermal Power Cycles 3 credits. Application of thermodynamics to design systems for conversion of thermal energy to power by various power cycles. PREREQ: ENGR 264 AND ENGR 309.
ME g419 Alternative Energy Systems Design 3 credits. Fundamentals of non-traditional energy generation, conversion and conservation techniques covered. Design and application of small, dispersed systems emphasized. PREREQ: ENGR 313, 309 AND MATH g360; COREQ: ENGR 341.
ENGR 421 Advanced Engineering Analysis I 3 credits. Cross-listed as MATH g421. Analysis of complex linear and nonlinear engineering systems using advanced techniques including Laplace transforms, Fourier series and classical partial differential equations. PREREQ: MATH g360, ENGR 264.
ENGR 422 Advanced Engineering Analysis II 3 credits. Cross-listed as MATH g422. Analysis of complex linear and nonlinear engineering systems using advanced techniques, including probability and statistics, advanced numerical methods and variational calculus. PREREQ: ENGR g421 OR MATH g42l.
ENGR 425 Mechatronics 3 credits. Basic kinematics, sensors, actuators, measurements, electronics, microprocessors, programmable logic controllers, feedback control, robotics and intelligent manufacturing. PREREQ: ENGR 313, MATH g360.
EE g426 Microprocessors 3 credits. Introduction to microprocessor architecture. Programming principles using machine and assembly languages, addressing modes, memory mapping, number representation and processing. PREREQ: ENGR 374.
EE g427 Embedded Systems Engineering 3 credits. Integration of algorithms, software and hardware to design real-time and embedded systems for signal processing and control. PREREQ: EE g426, EE g473, EE g475, OR PERMISSION OF INSTRUCTOR.
EE g429 Advanced Electronics 3 credits. Amplifier design and analysis, large-signal amplifiers and nonlinear effects, feedback, oscillators. PREREQ: ENGR 329.
ME g451 Compressible Fluid Flow 3 credits. Fundamentals of compressible flow and gas dynamics, development of basic principles, practical applications. Techniques developed for isentropic friction, heat addition, isothermal flow, shock wave analysis, propagation, expansion waves, reflection waves. PREREQ: ENGR 309 AND ENGR 341.
EE g472 Electrical Machines and Power 3 credits. Theory and application
of electrical machinery and transformers. Power and energy relationships
in power systems including generation, transmission and distribution. Includes
1-credit laboratory component. PREREQ: ENGR 313, MATH g360.
EE g473 Automatic Control Systems 3 credits. Study of continuous-time and discrete-time control systems using both frequency-domain and state-space techniques; topics include design methodology, performance specifications, analysis and design techniques. PREREQ: EE 345.
EE g474 Advanced Circuit Theory 3 credits. Methods of analog electrical circuit analysis and synthesis. Topics include signal flow graphs, multi-port networks, simulation techniques, and topological methods for formulation of network equations. PREREQ: ENGR 313 AND EE 345.
EE g475 Digital Signal Processing 3 credits. Design of recursive and non-recursive digital filters; frequency-domain analysis, fast Fourier transform techniques, spectral analysis; applications. Includes 1-credit laboratory component. PREREQ: EE 345.
ME g476 Heat Transfer 3 credits. Continuation of transport phenomena with emphasis on heat transfer. Conduction, convection, and radiation will be covered. Numerical solutions and equipment design emphasized. PREREQ: 264; COREQ: ENGR 309.
ENGR 478 Probabilistic Design 3 credits. Probabilistic methods applied to analysis and design. Setting probabilistic design objectives and calculating probabilistic performance emphasized. PREREQ: ENGR 264, MATH g360 AND SENIOR STANDING IN ENGINEERING.
ENGR 491 Seminar in Engineering 1 credit. A series of lectures on current topics in the literature by participants or guest lecturers chosen from industry. PREREQ: PERMISSION OF INSTRUCTOR.
EE g492 Advanced Control System Design 3 credits. Design of advanced control algorithms; topics include: observers and state estimation, linear quadratic regulator, frequency-domain techniques for robust control, and an introduction to multivariable and nonlinear control. PREREQ: ENGR g473.
ENGR 501 Methods of Engineering 3 credits. Introduction to fundamental concepts of engineering related to hazardous waste management. Not counted toward graduation. PREREQ: PHYS 111.
ENGR 510 Introduction to Environmental Engineering 3 credits. Introduction to physical, chemical, and biological principles of solid and hazardous waste management, water and wastewater treatment, air pollutant control, and national environmental regulation. PREREQ: CHEM 112 AND ENGR 309, OR PERMISSION OF INSTRUCTOR.
ENGR 570 Survey of Hazardous Waste Management Problems 3 credits.
Environmental, technical, political and economic aspects of hazardous waste
management. Credit not given if UI ChE 570 or ISU ENVE 607 taken. PREREQ:
ENGR 501 OR EQUIVALENT.
ENGR 572 Waste Treatment Technologies 3 credits. Procedures
for characterization of hazardous waste sites, identification and application
of physical, chemical, biological and thermal treatment. PREREQ: BIOL 202,
CHEM 111, MATH 43.
ENGR 589 Principles of Hazardous Waste Site Remediation 3 credits. Restoration technologies for waste sites. Site characterization and clean-up methods for chemical, radioactive, mixed wastes in soils and water. Practical methodologies. Credit not granted if ENVE 614 taken. PREREQ: ENGR 570 OR ENVE 607.
ENGR 606 Environmental Law and Regulations 3 credits. Federal, state, local environmental regulations addressing environmental impact assessment; water and air pollution control, hazardous waste, resource recovery, reuses, toxic substances, occupational safety and health, radiation, siting, auditing, liability. PREREQ: PERMISSION OF INSTRUCTOR.
ENGR 607 Hazardous Waste Management 3 credits. Management of hazardous and solid wastes, emphasis on CERCLA (Superfund) process for cleaning of uncontrolled hazardous waste sites and RECRA process for industrial treatment, storage, disposal facilities. PREREQ: MATH 508.
ENGR 610 Introduction to Radioactive Waste Management 3 credits. Principles and practices of radioactive waste storage, transportation and disposal. Evolution of government regulations and current solutions developed in response to the regulations. PREREQ: ENGR 501.
ENGR 650 Thesis 1-6 credits. Thesis research must be approved by the student's advisory committee. Six credits may be used to satisfy the research requirements for the degree.
ENGR 651 Seminar 1 credit. Current topics in engineering. Invited speakers will be used when possible. Students presentations required. May be taken a maximum of four times. PREREQ: PERMISSION OF INSTRUCTOR. Graded S/U.
ENGR 652 Special Problems 1-3 credits. Special experimental, computational, or theoretical investigation leading to development of proficiency in some area of engineering. Formal report required. PREREQ: PRIOR PROJECT APPROVAL REQUIRED BY AN ENGINEERING FACULTY. May be graded S/U.
ENGR 655 Hazardous Waste Management Seminar 1 credit. Environmental engineering and science topics related to hazardous waste characterization, cleanup, regulations. Includes case histories and presentations by graduate students and visiting speakers. PREREQ: PERMISSION OF INSTRUCTOR.
ENVE 409 Water and Wastewater Lab 1 credit. Fundamental analytical procedures for measurement of water and wastewater quality. Introduction to materials and protocols associated with general environmental analytical techniques. COREQ: ENGR g408.
ENVE 410 Introduction to Environmental Engineering 3 credits. Introduction to physical, chemical, and biological principles of solid and hazardous waste management, water and wastewater treatment, air pollutant control, and national environmental regulation. PREREQ: CHEM 112, ENGR 309.
ENVE 504 Environmental Risk Assessment 3 credits. Quantitative and qualitative approaches to characterizing and controlling contaminant pathways. Risk assessment requirements and implications in superfund projects for engineers working on remediation. PREREQ: BIOS 521 AND ENGR 501 IF REQUIRED BY HWM.
ENVE 611 Treatment Systems for Environmental Remediation 3 credits. Fundamental principles and processes for physical, chemical, and biological treatment of wastes including mixing, flocculation, sedimentation, stripping, aeration, sorption and leaching. Some experiments required. PREREQ: ENGR 341 AND ENVE 510.
ENVE 612 Treatment of Hazardous Chemical Waste 3 credits. Alternative processes and operations for the treatment of hazardous chemicals. PREREQ: MATH g360, ENVE 607, AND COURSE IN UNIT OPERATIONS.
ENVE 614 Hazardous Waste Site Remediation 3 credits. Characterizing waste sites, application of physical, chemical, biological corrective actions, site restoration. Case studies illustrate corrective action and site restoration. PREREQ: ENGR 341, ENVE 607 AND COURSE IN FLUID FLOW THROUGH POROUS MEDIA.
ENVE 615 Water Quality Modeling and Control 3 credits. Fundamental principles for mathematical modeling and analysis of environmental contaminant's fate and transport in lakes, rivers, estuaries, and groundwater. PREREQ: ENVE 510.
ENVE 616 Biological Treatment of Wastewater 3 credits. Fundamental principles, design, and operation of aerobic and anaerobic biological waste treatment processes. PREREQ: ENVE 510.
ENVE 629 Physical and Chemical Treatment of Water and Waste Water 3 credits. Fundamental principles, design and operations of physical and chemical water and waste water treatment processes. Removal of hazardous materials emphasized. PREREQ: ENVE 510 and CHEM 535.
ENVE 630 Air Pollution and Control 3 credits. An introductory air pollution course. Regulations, atmospheric dispersion models, control of emissions and sources and human health effects are emphasized. PREREQ: ENVE 510.
NS&E g445 Neutron Reactions and Transport 3 credits. Physical principles underlying neutron interactions. Multi-region and multi-energy diffusion and transport. Beamport and filter concepts and design. PREREQ: ENGR 264, ENGR 371. COREQ: MATH g421.
NS&E g446 Design of Fuel Cycle Systems 3 credits. Criticality, shielding and thermal design of fuel or waste transportation and storage facilities. Criticality and thermal analysis code use. Storage and transportation regulations, environmental and economic considerations. Introduction to safety criteria. PREREQ: ENGR g445.
NS&E g447 Nuclear Systems Laboratory 3 credits. Techniques of radiation detection and measurements, flux measurements, neutron activation analysis, approach to criticality, Inhour equation, subcritical experiments. PREREQ: ENGR g445.
NS&E g448 Design, Control and USE of Radiation Systems 3 credits. Generation detection and measurement systems design for control and use of neutrons and gamma rays in industrial and medical applications. Radiation protection, regulations, environmental and economic considerations. COREQ: ENGR g445.
NS&E 584-585 Survey of Nuclear Engineering 3 credits. For BS engineering graduates with no nuclear background. Lecture, laboratory each semester. Nuclear science; reactor physics, kinetics and thermal hydraulics; nuclear fuel cycle. Not counted toward graduation requirements. PREREQ: BS IN ENGINEERING.
NS&E 601 Nuclear Engineering Experiments 3 credits. Experimental verification of theoretical models will be stressed. Kinetic behavior, neuron spatial distribution, perturbation, and other characteristic equations will be investigated. PREREQ: ENGR 432 AND ENGR 433.
NS&E 603 Advanced Thermal Hydraulics 3 credits. Advanced studies of both fluid flow and heat transfer in nuclear reactor cores. Conservation equations; constitutive relations; formulation and solution approaches for complete equation set. PREREQ: ENGR 341, ME g476.
NS&E 604 Dynamic Behavior of Nuclear Systems 3 credits. Kinetic behavior of nuclear reactors including feedback effects of power transients, fuel burn up, coolant perturbations, etc. Mathematical models developed to predict both short and long term behavior. PREREQ: ENGR 432.
NS&E 605 Advanced Nuclear Engineering 3 credits. Detailed
treatment of current, advanced nuclear power reactor designs. Emphasis
on the inherent and engineered safety features and on advantages and disadvantages
of each design. PREREQ: NS&E 604 AND NS&E 571.
NS&E 616 Special Application of Nuclear Energy 3 credits.
Topics will include the use of isotopic power sources for remote systems,
nuclear propulsion for earth and space vehicles, process heat sources,
portable power plants, etc. Advances in related fields such as direct conversion
gas turbines for high temperature application, etc. PREREQ: ME g476.
NS&E 617 Power Plant Engineering 3 credits. Detailed discussion of project engineering, safety and analysis licensing, and regulations that pertain to the procurement and operation of nuclear powersystems. PREREQ: PERMISSION OF INSTRUCTOR.
NS&E 618 Treatment of Low Level Radioactive Waste 3 credits. Design and analysis of processes and facilities for treating low-level radioactive waste. Volume reduction, handling, solidification and decontamination processes will be covered. PREREQ: ENVE 610 AND ENGR 371.
NS&E 619 Treatment of High Level Radioactive Waste 3 credits. Design and analysis of processes and facilities for treating high-level radioactive waste. Shielding, criticality, separation and stabilization processes will be covered. PREREQ: ENVE 610 AND ENGR 371.
NS&E 620 Radiation Health Physics and Safety 3 credits. Advanced health physics methods applied to nuclear plants. Radiation safety regulations and ALARA concept. Application of shielding codes to achieve compliance. PREREQ: ENGR 371 AND PHYS 532 OR EQUIVALENT.
NS&E 621 Shielding and Radiation Protection 3 credits. Analysis of materials for radiation shielding application, design of composite shields, duct streaming, buildup factors in shield design, and other topics. Shield requirements for instruments and personal protection. PREREQ: NS&E g471 OR EQUIVALENT.
NS&E 624 Reactor Safety 3 credits. Safety criteria involved in the safe design of nuclear reactor systems. Criticality safety as well as containment, handling, and analysis of potentially hazardous situations. PREREQ: NS&E 603.
NS&E 625 Two Phase Flow 3 credits. Fundamentals of two phase flow. Traditional models. Derivation and examination of conservation equations. Investigation of two phase flow regimes. PREREQ: NS&E 603.
NS&E 626 Siting and Regulations 3 credits. Problems encountered in the location of large nuclear plants with regard to existing federal and state regulations. Regulatory practices and the responsibility of the engineer in designing for regulatory compliance.
NS&E 627 Computers in Nuclear Analysis, 3 credits. Large scale computational methods in reactor science, including multi-group diffusion, cross-section generation, fuel depletion, economics and heat transfer. Extensive use of computer required.
NS&E 628 Reliability and Risk Analysis 3 credits. Statistical and probabilistic methods of evaluating process and equipment reliability. Use of FMEA, fault tree techniques and Markov methods. Risk and efficacy assessment. PREREQ: ENGR g478 OR MATH g450.
NS&E 631-632 Advanced Reactor Physics 3 credits. Study of advanced theories used in the calculation of nuclear reactor parameters including such topics as the Boltzman transport equation with energy and space dependence multi-group, multi-region diffusion for reflected systems, perturbation theory, etc. Special emphasis will be given to the application of digital computers in nuclear reactor design problems. PREREQ: ENGR 432 OR EQUIVALENT.
NS&E 633 Controlled Thermonuclear Energy 3 credits. Theory of thermonuclear reactions, weakly ionized gases; Boltzmann theory; elementary plasma physics; and possible thermonuclear reactors. PREREQ: PERMISSION OF INSTRUCTOR.
NS&E 636 Boiling and Condensation 3 credits. Study of the thermophysics of vaporization and condensation, including heat transfer equipment applications. Includes interfacial phenomena, phase stability, homogeneous and heterogeneous nucleation, pool boiling, and external condensation. PREREQ: NS&E 625.
NS&E 639 System Analysis of Reactor Dynamics 3 credits. Selected topics in nuclear system dynamics, simulation, and control; content varies. PREREQ: PERMISSION OF INSTRUCTOR.
NS&E 646 Two-Phase Flow Measurements Laboratory 2 credits. Design, calibration, operation of two-phase density and mass flow measurement systems. Qualitative and quantitative measurements of flow regime characteristic parameters. Single- and two-component flows. Measurement of upstream disturbance effects. PREREQ: M&CE 644.
NS&E 647 Experiment Design and Data Analysis 3 credits. Statistical analysis and other techniques for data interpretation and qualification. Experiment design principles. On-line digital signal processing methods. PREREQ: ENGR g478 OR MATH g450; COREQ: ENGR g421 OR MATH g421.
NS&E 699 Doctoral Dissertation. Research toward completion of the dissertation. Variable credit. Graded S/U.
M&CE 642 Advanced Control Systems 3 credits. Study of advances in classical and modern control systems. Optimization, estimation and Eigenstructure control. PREREQ: EE g473 OR EQUIVALENT.
M&CE 643 Advanced Measurement Methods 3 credits. Instrumentation systems used in detection and signal conditioning of thermal-hydraulic process variables, radiation including lasers, and electrical and mechanical properties of materials. PREREQ: ENGR 344 OR EQUIVALENT.
M&CE 644 Measurements and Controls Laboratory 3 credits. Work with measuring systems for a variety of process variables. Investigation of characteristics of various process control components and systems. Transient and stationary conditions will be included. PREREQ: M&CE 642 AND M&CE 643 OR EQUIVALENT.
M&CE 645 Advanced Control Theory 3 credits. Topics selected from nonlinear, adaptive, robust, stochastic, intelligent, or process control theory, depending upon the interests of students and faculty. May be repeated for credit when topics vary. PREREQ: M&CE 642.
M&CE 649 Robotics and Automation 3 credits. Robotic manipulator kinematics, dynamics, trajectory planning, sensors, programming and control. The application concepts of robotics in industry will be briefly introduced. PREREQ: M&CE 642.
M&CE 653 Optimal Control Systems 3 credits. Performance index. Calculus of variations, Pontryagin maximum principle. Linear quadratic regulator. Time and fuel optimal control. Linear quadratic Gaussian problem. Kalman Filter. H optimal control. Industrial applications. PREREQ: M&CE 642 OR PERMISSION OF INSTRUCTOR.
IDAHO STATE
UNIVERSITY