
College of Engineering
Jay F. Kunze, Ph.D., Dean
D. S. Naidu, Ph.D., Associate Dean for Graduate Studies
R. E. Stuffle, Ph.D., Associate Dean for Undergraduate Studies
Professors: Bosworth, Kunze, Naidu, Robinson, Sadid, Stuffle
Associate Professors: Bennion, Blotter, Davis, Ebrahimpour, Ellis, Kantabutra, Leung, Sato, Wabrek
Assistant Professors: Hofle
Adjunct Faculty: Campo, Beitel, Blacker, Edinborough, Hall, Hamman, Larson, Neischmidt, Smart
Emeritus Faculty: Neill, Stephens
Doctor of Philosophy in Engineering and Applied Science
The doctoral program is administered by the College of Engineering and offered jointly with the Department of Physics. Research areas emphasized are Measurement and Control, Environmental Engineering, Nuclear Engineering, Radiation Science, Accelerator Applications, Applied Nuclear Physics, and Health Physics. To attain a degree in this program, a student must demonstrate scholarly achievement and an ability for independent investigation. The program will normally require three years of full-time study beyond the master's degree, including research and preparation of the dissertation.
Admissions
All applicants must meet ISU Graduate School admission requirements for doctoral programs. Additionally, applicants must have attained a master's degree in engineering, physics or a closely related field.
Requirements
The PhD degree requires completion of a least 84 credits consisting of 30 credits for the MS degree, 18 credits of course work, 4 credits of graduate seminar and 32 credits of dissertation research. The 30 credits for the MS degree is the maximum allowed. At least 9 of the 18 credits of course work must be in collateral areas as designated by the student's advisory committee. Additional dissertation research credits may be required by the student's dissertation committee.
Program of Study
An advisory committee consisting of Idaho State University graduate faculty from the College of Engineering and the Department of Physics will be established for each student upon entry into the program. The committee will guide the student in establishing his or her program of course work and laboratory study based upon the student's background and research interest. The advisory committee has the responsibility of ensuring that the student has adequate knowledge to support research in his or her area of interest. At the end of the first year, the student will sit for a written, comprehensive examination over the didactic information within the scope of the research area. The student will be allowed two attempts to pass this examination, and the second attempt must be within one-half year after the first attempt. The student will be admitted to candidacy upon passing the comprehensive examination.
A dissertation committee, chaired by the candidate's major professor, will be appointed. Within six months, the candidate, with guidance from the major professor, will satisfactorily complete an oral presentation and defense of a proposal for dissertation research to the committee. The research and dissertation preparation must be done under the close supervision of the committee and must include at least one full year of work performed under Idaho State University graduate faculty. The committee must formally approve the research proposal at least one-half year before the dissertation is submitted for approval.
Dissertation approval requires a public presentation of the dissertation and a satisfactory oral defense to the committee.
Master of Science in Engineering
The graduate program in the College of Engineering offers the student a choice of three majors for specialization at the master's level together with a breadth of courses to fit individual educational goals. The majors are:
- Nuclear Science and Engineering
- Measurement and Control Engineering
- Environmental Engineering
- Engineering Structures and Mechanics
There are 32 credit hours required for each major. Approximately half of the credits are engineering and technical electives, which should generally follow the guidelines specified in the College of Engineering Graduate Studies Handbook, subject to the approval of the student's advisory committee. The thesis project, required in each major, should consist of study and research that complements the coursework selected. Each student must also complete two semesters of seminar, an important component in developing research and communication skills.
The student must meet all of the requirements of the Graduate School for the Master of Science degree. With the assistance of the graduate faculty of the College of Engineering, the student shall select an initial advisor during the first semester of residence to help in planning a program of studies and research. The student must also complete a Plan of Study and form a complete advisory committee by the time six credits of coursework have been completed.
Nuclear Science and Engineering
The master's degree program in Nuclear Science and Engineering prepares the student for advanced placement in the nuclear industry in commercial, research, or development areas.It provides in-depth studies and advanced design concepts in several areas of modern nuclear science and engineering. It is also an excellent program of study for entering the Ph.D. program in Nuclear Science and Engineering.
Required Courses
NS&E 601 Nuclear Engineering Experiments 3 cr NS&E 608 Advanced Radiation Transport & Shielding 3 cr NS&E 609 Advanced Radiation Detection, Measurements & Applications 3 cr Approved Engineering Electives 9 cr Approved Technical Electives 6 cr ENGR 650 Thesis 6 cr ENGR 651 Seminar 2 crMeasurement and Control Engineering
The master's degree program in Measurement and Control Engineering fills a growing need in industry for engineers who can design and implement instrumentation and control systems for the increasingly complex manufacturing and production techniques being used today. Advances in modern, as well as classical, measurement and control systems have far outpaced the traditional control courses. This program serves to fill the gap left in most traditional engineering curricula.
Required Courses (9 credits required)
The following courses are required of every student receiving the M.S. Degree in Measurement and Control Engineering covered by the abbreviated list.
M&CE 642 Advanced Control Systems 3 cr M&CE 643 Advanced Measurement Methods 3 cr M&CE 644 Measurements & Controls Laboratory 3 cr Approved Engineering Electives 9 cr Approved Technical Electives 6 cr ENGR 650 Thesis 6 cr ENGR 651 Seminar 2 crEnvironmental Engineering
This program is designed to provide the student with advanced technical training in environmental engineering, with an emphasis on hazardous waste treatment and control. The program fills a need in industry and government for professionals with a broad understanding of the technical aspects of environmental issues. Students enrolled in the program are generally expected to have a sufficient background in mathematics and chemistry (a minimum of one year of general chemistry). Students with an insufficient background in engineering and math are required to make up the deficiency according to the advice of their advisory committee, which usually includes ENGR 307, ENGR 309,
CE 332, ME 341.Required Courses
ENVE 508 Water & Waste Water Quality 3 cr ENVE 509 Water & Waste Water Lab 1 cr OR CHEM 535 Environmental Chemistry 2 cr CHEM 537 Environmental Chemistry Lab 1 cr ENVE 510 Intro to Environmental Engineering 3 cr ENVE 611 Treatment Systems for Environmental Remediation 3 crApproved Environmental Engineering Electives (9 credits required)
Students are to select a core of at least nine credits from graduate level engineering-intensive courses from the following list. Note: a particular student may select one or more intensive engineering courses not on this list, with the express approval of her/his committee, for the purpose of focusing him/her in a particular direction not covered by this abbreviated list.
ENVE 504 Engineering Risk Assessment 3 cr ENVE 612 Treatment of Hazardous Chemical Waste 3 cr ENVE 614 Hazardous Waste Site Remediation 3 cr ENVE 615 Water Quality Modeling & Control 3 cr ENVE 616 Biological Treatment of Wastewater 3 cr ENVE 617 Environmental Systems Engineering & Design 3 cr ENVE 629 Physical & Chemical Treatment of Water and Waste Water 3 cr ENVE 630 Air Pollution & Control 3 cr ENGR 521 Advanced Engineering Analysis (Math) 3 cr ENGR 578 Probabilistic Design 3 cr ME 519 Alternative Energy Systems Design 3 cr ME 576 Heat Transfer 3 cr NS&E 544 Nuclear Fuel Cycles 3 cr NS&E 618 Treatment of Low Level Radioactive Waste 3 cr NS&E 619 Treatment of High Level Radioactive Waste 3 crSeminar (2 credits required)
The seminar course must be completed two times in order to satisfy the requirement.
ENGR 651 Seminar 1 cr (x2)Approved Environmental Engineering Technical Electives (6 credits required)
Any graduate level course from Bioscience, Chemistry, Geology, Math, or Pharmacy as well as engineering electives may be taken as a technical elective with approval of the student's advisory committee. The following courses are recommended for consideration.ENGR 606 Environmental Law & Regulation 3 cr ENGR 607 Hazardous Waste Management 3 cr ENVE 610 Introduction to Radioactive Waste Management 3 cr BIOS 687 Environmental Science & Pollutants 3 cr BIOS 623 Soil & Groundwater Bioremediation 3 cr GEOL 520 Principles of Geochemistry 3 cr PHYS 605 Radiological Environmental Monitoring & Surveillance 3 cr PSCI 621 Biological Action of Chemicals 3 cr PSCI 622 Principles of Toxicology 3 crEngineering Structures and Mechanics
This M.S. program is designed to provide greater in-depth study, both theoretically and experimentally, in structures, mechanics, and in fields that typically are interdisciplinary between civil, mechanical and electrical engineering. This includes such concepts as vibration control of structures, advanced computational methods for analysis and design of systems, and material design and manufacture to accomplish improved strength, durability, and structural integrity. This program satisfies the necessary requirements for engineers in practice and those preparing to enter the profession. The program also provides a suitable base for doctoral research.
The program is available with a thesis or non-thesis option, and is offered both at the
Pocatello and the Idaho Falls campuses, primarily through the use of telecommunications/distance learning.
Required CoursesES&M 531 Advanced Mechanics of Solids 3 cr ES&M 665 Finite Element Methods 3 cr ES&M 667 Structures & Mechanics Lab 3 cr Approved Engineering Electives 9 cr Approved Technical Electives 6 cr ENGR 650 Thesis 6 cr ENGR 651 Seminar 2 crThesis Program
All student entering with less than two years of industrial experience as determined by the College are required to complete six credits of thesis in their related field. Students who are planning to continue their education beyond the master level are strongly recommended to choose this option. After the completion of the course work and the thesis, an oral defense of the thesis will be required.
ENGR 650 Thesis 6 crNon-thesis Program
All students entering with a minimum of two years industrial experience in the related area as determined by the College are eligible to choose this option. In the non-thesis program students will be required to take an additional 3-credit course and to complete a 3-credit Special Project in the related field and a written report. After completion of the course work and the Special Project, students are required to take a two-hour oral exam on their Special project and other courses of the MS program.
ENGR 660 Special Project 3 crHazardous Waste Management
This program is designed to provide the student with a broad understanding of hazardous waste problems and how they can be remediated. The courses may be completed as an option in the Master of Science in Nuclear Science and Engineering degree, the Master of Science in Measurement and Control Engineering degree, or in an interdisciplinary master's degree program. In the interdisciplinary degree, students must select another area of emphasis such as business, biology, chemistry, geology or physics. Regulations governing the interdisciplinary master's degree program are included in the general regulations of the Graduate School elsewhere in this catalog. Further, the courses may be taken as a source of information by any qualified student. Other courses pertinent to this field are offered by the Department of Biological Sciences, the Department of Chemistry, and the Department of Geology. This program is jointly sponsored by the University of Idaho and many of the courses are cross listed.
To qualify for the statement, "Hazardous Waste Management Option" on the transcript, at least nine credits must be completed from the following list of courses and the student must enroll, and participate, in the seminar, ENGR 655 at least twice.
Hazardous Waste Management Courses
At least nine credits required for option
BIOS 687 Environmental Science & Pollutants 3 cr ENGR 570 Survey of Hazardous Waste Management Problems 3 cr ENGR 606 Environmental Law & Regulations 3 cr ENGR 607 Hazardous Waste Management 3 cr ENVE 612 Treatment of Hazardous Chemical Waste 3 cr ENVE 614 Hazardous Waste Site Remediation 3 cr ENGR 655 Hazardous Waste Management Seminar 1 crEngineering Graduate Courses
ENGR g415 Model Theory 3 credits. Theory of design and testing of scaled system models. Dimensional analysis with application to physical models. True and distorted models, linear and non-linear models, and analogies. Laboratory work required. PREREQ: CE 341 OR ME 341, AND ENGR 350.
ENGR g421 Advanced Engineering Analysis I 3 credits. Analysis of complex linear and nonlinear engineering systems using advanced techniques including Laplace transforms, Fourier series and classical partial differential equations. Cross-listed as MATH g421. PREREQ: MATH g360.
ENGR g422 Advanced Engineering Analysis II 3 credits. Cross-listed as MATH g422. Analysis of complex linear and nonlinear engineering systems using advanced techniques, including probability and statistics, advanced numerical methods and variational calculus. PREREQ: ENGR g421 OR MATH g42l.
ENGR g478 Probabilistic Design 3 credits. Probabilistic methods applied to analysis and design. Setting probabilistic design objectives and calculating probabilistic performance emphasized. PREREQ: ENGR 264, MATH g360 AND SENIOR STANDING IN ENGINEERING.
ENGR g491 Seminar in Engineering 1 credit. A series of lectures on current topics in the literature by participants or guest lecturers chosen fromindustry. PREREQ: PERMISSION OF INSTRUCTOR.
ENGR 501 Methods of Engineering 3 credits. Introduction to fundamental concepts of engineering related to hazardous waste management. Not counted toward graduation. PREREQ: PHYS 111.
ENGR 510 Introduction to Environmental Engineering 3 credits. Introduction to physical, chemical, and biological principles of solid and hazardous waste management, water and wastewater treatment, air pollutant control, and national environmental regulation. PREREQ: CHEM 112 AND ENGR 309, OR PERMISSION OF INSTRUCTOR.
ENGR 570 Survey of Hazardous Waste Management Problems 3 credits. Environmental, technical, political and economic aspects of hazardous waste management. Credit not given if UI ChE 570 or ISU ENVE 607 taken. PREREQ: ENGR 501 OR EQUIVALENT.
ENGR 572 Waste Treatment Technologies 3 credits. Procedures for characterization of hazardous waste sites, identification and application of physical, chemical, biological and thermal treatment. PREREQ: BIOL 202, CHEM 111, MATH 43.
ENGR 589 Principles of Hazardous Waste Site Remediation 3 credits. Restoration technologies for waste sites. Site characterization and clean-up methods for chemical, radioactive, mixed wastes in soils and water. Practical methodologies. Credit not granted if ENVE 614 taken. PREREQ: ENGR 570 OR ENVE 607.
ENGR 606 Environmental Law and Regulations 3 credits. Federal, state, local environmental regulations addressing environmental impact assessment; water and air pollution control, hazardous waste, resource recovery, reuses, toxic substances, occupational safety and health, radiation, siting, auditing, liability. Cross-listed with POLS 606. PREREQ: PERMISSION OF INSTRUCTOR.
ENGR 607 Hazardous Waste Management 3 credits. Management of hazardous and solid wastes, emphasis on CERCLA (Superfund) process for cleaning of uncontrolled hazardous waste sites and RECRA process for industrial treatment, storage, disposal facilities. PREREQ: MATH 508.
ENGR 609 Advanced Transport Phenomena 3 credits. Advanced theory and applications of heat, mass, and momentum transport; gases for correlation in engineering design of a variety of process equipment. PREREQ: NS&E g445, MATH g422.
ENGR 650 Thesis 1-6 credits. Thesis research must be approved by the student's advisory committee. Six credits may be used to satisfy the research requirements for the degree.
ENGR 651 Seminar 1 credit. Current topics in engineering. Invited speakers will be used when possible. Students presentations required. May be taken a maximum of four times. PREREQ: PERMISSION OF INSTRUCTOR. Graded S/U.
ENGR 652 Special Problems 1-3 credits. Special experimental, computational, or theoretical investigation leading to development of proficiency in some area of engineering. Formal report required. PREREQ: PRIOR PROJECT APPROVAL REQUIRED BY AN ENGINEERING FACULTY. May be graded S/U.
ENGR 655 Environmental Topics Seminar 1 credit. Environmental engineering and science topics related to hazardous waste characterization, cleanup, regulations. Includes case histories and presentations by graduate students and visiting speakers. PREREQ: PERMISSION OF INSTRUCTOR.
ENGR 660 Special Project 3 credits. A significant project, involving engineering applications, toward the completion of M.S. program with non-thesis option. Includes a report and oral examination. Graded S/U.
Civil Engineering Graduate Courses
CE g332 Basic Geotechnics 3 credits. Classification, analysis and evaluation of soils as engineering material. Water movement through soils. Soil mechanics applied to analysis of foundations, earth slopes and other structures. PREREQ: ENGR 223. COREQ: CE 341.
CE g435 Hydraulic Design 3 credits. Hydrology. Hydraulic design of water control and transport structures, pipelines, and distribution systems. Computer methods utilized. PREREQ: ENGR 264 AND CE 341.
CE g440 Vibration Analysis 3 credits. Free vibration and forced response of single and multiple degree of freedom systems, normal modes, random vibrations. Cross-listed as ME g440. PREREQ: MATH g360, ENGR 220, AND ENGR 350.
CE g462 Design of Steel Structures 3 credits. Design of steel members and connections with emphasis on the AISC specifications. PREREQ: CE 461
CE g464 Design of Concrete Structures 3 credits. Design of reinforced concrete beams, columns, and slabs. Introduction to pre-stressing. PREREQ: CE 461.
CE g466 Design of Wood Structures 3 credits. Design of solid and laminated wood members and connections. Includes the design of wooden diaphragms for resisting lateral loads. PREREQ: CE 361.
Electrical Engineering Graduate Courses
EE g413 Techniques of Computer-Aided Circuit Analysis and Design 3 credits. Automatic formulation of equations and fundamental programming techniques pertinent to computer-aided circuit analysis, design, modeling. May include sensitivity calculations, system analogies, optimization. PREREQ: ENGR 313, ENGR 264.
EE g425 Mechatronics 3 credits. Basic kinematics, sensors, actuators, measurements, electronics, microprocessors, programmable logic controllers, feedback control, robotics and intelligent manufacturing. Cross-listed as ME g425. PREREQ: ENGR 313, MATH g360.
EE g426 Microprocessors 3 credits. Introduction to microprocessor architecture. Programming principles using machine and assembly languages, addressing modes, memory mapping, number representation and processing. PREREQ: ENGR 374.
EE g427 Embedded Systems Engineering 3 credits. Integration of algorithms, software and hardware to design real-time and embedded systems for signal processing and control. PREREQ: EE g426, EE g473, EE g475, OR PERMISSION OF INSTRUCTOR.
EE g429 Advanced Electronics 3 credits. Amplifier design and analysis, large-signal amplifiers and nonlinear effects, feedback, oscillators. PREREQ: ENGR 329.
EE g472 Electrical Machines and Power 3 credits. Theory and application of electrical machinery and transformers. Power and energy relationships in power systems including generation, transmission and distribution. Includes 1-credit laboratory component. PREREQ: ENGR 313, MATH g360.
EE g473 Automatic Control Systems 3 credits. Study of continuous-time and discrete-time control systems using both frequency-domain and state-space techniques; topics include design methodology, performance specifications, analysis and design techniques. PREREQ: EE 345.
EE g474 Advanced Circuit Theory 3 credits. Methods of analog electrical circuit analysis and synthesis. Topics include signal flow graphs, multi-port networks, simulation techniques, and topological methods for formulation of network equations. PREREQ: ENGR 313 AND EE 345.
EE g475 Digital Signal Processing 3 credits. Design of recursive and non-recursive digital filters; frequency-domain analysis, fast Fourier transform techniques, spectral analysis; applications. Includes 1-credit laboratory component. PREREQ: EE 345.
EE g492 Advanced Control System Design 3 credits. Design of advanced control algorithms; topics include: observers and state estimation, linear quadratic regulator, frequency-domain techniques for robust control, and an introduction to multivariable and nonlinear control. PREREQ: ENGR g473.
Mechanical Engineering Graduate Courses
ME g405 Measurement Systems Design 3 credits. Introduction to instrumentation systems analysis. and design, including: statistical analysis, system modeling, actuators, transducers, sensor systems, signal transmission, data acquisition, and signal conditioning. PREREQ: ENGR 313 AND MATH g360. COREQ: g406.
ME g406 Measurement Systems Laboratory 1 credit. Principles of measurement, measurement standards and accuracy, detectors and transducers, digital data acquisition principles, signal conditioning systems and readout devices, statistical concepts in measurement, experimental investigation of engineering systems. COREQ: ME g405.
ME g416 Thermal Power Cycles 3 credits. Application of thermodynamics to design of systems for conversion of thermal energy to power by various power cycles. PREREQ: ENGR 264 AND ME 341.
ME g419 Alternative Energy Systems Design 3 credits. Fundamentals of non-traditional energy generation, conversion and conservation techniques covered. Design and application of small, dispersed systems emphasized. PREREQ: ENGR 313, 309 AND MATH g360; COREQ: ENGR 341.
ME g425 Mechatronics 3 credits. Basic kinematics, sensors, actuators, measurements, electronics, microprocessors, programmable logic controllers, feedback control, robotics and intelligent manufacturing. Cross-listed as EE g425. PREREQ: ENGR 313, MATH g360.
ME g440 Vibration Analysis 3 credits. Free vibration and forced response of single and multiple degree of freedom systems, normal modes, random vibrations. Cross-listed as CE g440. PREREQ: MATH g360, ENGR 220, AND ENGR 350.
ME g451 Compressible Fluid Flow 3 credits. Fundamentals of compressible flow and gas dynamics, development of basic principles, practical applications. Techniques developed for isentropic friction, heat addition, isothermal flow, shock wave analysis, propagation, expansion waves, reflection waves. PREREQ: ENGR 309 AND ENGR 341.
ME g476 Heat Transfer 3 credits. Continuation of transport phenomena with emphasis on heat transfer. Conduction, convection, and radiation will be covered. Numerical solutions and equipment design emphasized. PREREQ: ENGR 264. COREQ: ME 341.
Environmental Engineering Graduate Courses
ENVE g404 Environmental Risk Assessment 3 credits. Quantitative and qualitative approaches to characterizing and controlling contaminant pathways. Risk assessment requirements and implications in superfund projects for engineers working on remediation. PREREQ: BIOS 521 AND ENGR 501 IF REQUIRED BY HWM.
ENVE g408 Water and Waste Water Quality 3 credits. Design and applications of water and waste water treatment systems for water quality control and reuse. PREREQ: CE 341 AND CHEM 112.
ENVE g409 Water and Waste Water Lab 1 credit. Fundamental analytical procedures for measurement of water and wastewater quality. Introduction to materials and protocols associated with general environmental analytical techniques. COREQ: ENGR g408.
ENVE g410 Introduction to Environmental Engineering 3 credits. Introduction to physical, chemical, and biological principles of solid and hazardous waste management, water and waste water treatment, air pollutant control, and national environmental regulation. PREREQ: CHEM 112 AND CE 341, OR PERMISSION OF INSTRUCTOR.
ENVE g430 Air Pollution and Solid Waste 3 credits. Sources, characteristics, regulations, and effects of air pollution and solid waste on environmental quality; analysis and design of control systems, including the recovery of resources from solid waste. PREREQ: PERMISSION OF INSTRUCTOR.
ENVE 610 Introduction to Radioactive Waste Management 3 credits. Principles and practices of radioactive waste storage, transportation and disposal. Evolution of government regulations and current solutions developed in response to the regulations. PREREQ: ENGR 501.
ENVE 611 Treatment Systems for Environmental Remediation 3 credits. Fundamental principles and processes for physical, chemical, and biological treatment of wastes including mixing, flocculation, sedimentation, stripping, aeration, sorption and leaching. Some experiments required. PREREQ: ENGR 341 AND ENVE 510.
ENVE 612 Treatment of Hazardous Chemical Waste 3 credits. Alternative processes and operations for the treatment of hazardous chemicals. PREREQ: MATH g360, ENVE 607, AND COURSE IN UNIT OPERATIONS.
ENVE 614 Hazardous Waste Site Remediation 3 credits. Characterizing waste sites, application of physical, chemical, biological corrective actions, site restoration. Case studies illustrate corrective action and site restoration. PREREQ: ENGR 341, ENVE 607 AND COURSE IN FLUID FLOW THROUGH POROUS MEDIA.
ENVE 615 Water Quality Modeling and Control 3 credits. Fundamental principles for mathematical modeling and analysis of environmental contaminant's fate and transport in lakes, rivers, estuaries, and groundwater. PREREQ: ENVE 510.
ENVE 616 Biological Treatment of Wastewater 3 credits. Fundamental principles, design, and operation of aerobic and anaerobic biological waste treatment processes. PREREQ: ENVE 510.
ENVE 617 Environmental Systems Engineering and Design 3 credits. Application of physical, chemical, and biological operations and processes to the design of water, waste water, and industrial waste treatment systems. PREREQ: ENVE 510 OR PREVIOUS DESIGN EXPERIENCE.
ENVE 629 Physical and Chemical Treatment of Water and Waste Water 3 credits. Fundamental principles, design and operations of physical and chemical water and waste water treatment processes. Removal of hazardous materials emphasized. PREREQ: ENVE 510 and CHEM 535.
ENVE 630 Air Pollution and Control 3 credits. An introductory air pollution course. Regulations, atmospheric dispersion models, control of emissions and sources and human health effects are emphasized. PREREQ: ENVE 510.
Engineering Structures And Mechanics Graduate Courses
ES&M g431 Advanced Mechanics of Solids 3 credits. An introduction to elasticity, plasticity, and energy foundations, stability, plates. PREREQ: ENGR 321 AND MATH g360.
ES&M 652 Advanced Topics in ES&M 3 credits. Discussion of current research topics conducted by engineering faculty from ISU and elsewhere. Topics can be arranged with instructor and advisor. PREREQ: PERMISSION OF INSTRUCTOR.
ES&M 665 Finite Element Methods 3 credits. Introduction to finite element methods applied to linear one- and two-dimensional problems. Application of the concept to specific problems in various fields of engineering and applied sciences. PREREQ: ENGR 264, ENGR 321, AND MATH g360.
ES&M 667 Structures and Mechanics Laboratory 3 credits. Strain gauge installation and circuitry. Strain measurements and analysis of variety of structural and mechanical systems. Dynamic measurements of various structures. COREQ: ES&M 531.
Measurement and Control Engineering Graduate Courses
M&CE 640 System Modeling, Identification and Simulation 3 credits. Model development, off-line and on-line identification methods for engineering systems, diagnostic tests and model validation and analog and digital simulation methods. PREREQ: EE g473.
M&CE 642 Advanced Control Systems 3 credits. Study of advances in classical and modern control systems. Optimization, estimation and Eigenstructure control. PREREQ: EE g473 OR EQUIVALENT.
M&CE 643 Advanced Measurement Methods 3 credits. Instrumentation systems used in detection and signal conditioning of thermal-hydraulic process variables, radiation including lasers, and electrical and mechanical properties of materials. PREREQ: ENGR 344 OR EQUIVALENT.
M&CE 644 Measurements and Controls Laboratory 3 credits. Work with measuring systems for a variety of process variables. Investigation of characteristics of various process control components and systems. Transient and stationary conditions will be included. PREREQ: M&CE 642 AND M&CE 643 OR EQUIVALENT.
M&CE 645 Advanced Control Theory 3 credits. Topics selected from nonlinear, adaptive, robust, stochastic, intelligent, or process control theory, depending upon the interests of students and faculty. May be repeated for credit when topics vary. PREREQ: M&CE 642.
M&CE 649 Robotics and Automation 3 credits. Robotic manipulator kinematics, dynamics, trajectory planning, sensors, programming and control. The application concepts of robotics in industry will be briefly introduced. PREREQ: M&CE 642.
M&CE 653 Optimal Control Systems 3 credits. Performance index. Calculus of variations, Pontryagin maximum principle. Linear quadratic regulator. Time and fuel optimal control. Linear quadratic Gaussian problem. Kalman Filter. H optimal control. Industrial applications. PREREQ: M&CE 642 OR PERMISSION OF INSTRUCTOR.
Nuclear Science and Engineering Graduate Courses
NS&E g444 Nuclear Fuel Cycles 3 credits.Exploration of the processes associated with nuclearfuel cycles including mining, fabrication, reprocessing,and disposal. PREREQ: ENGR 371, CHEM 316318.
NS&E g445 Neutron Reactions and Transport 3 credits. Physical principles underlying neutron interactions. Multi-region and multi-energy diffusion and transport. Beamport and filter concepts and design. PREREQ: ENGR 264, ENGR 371. COREQ: MATH g421.
NS&E g446 Design of Fuel Cycle Systems 3 credits. Criticality, shielding and thermal design of fuel or waste transportation and storage facilities. Criticality and thermal analysis code use. Storage and transportation regulations, environmental and economic considerations. Introduction to safety criteria. PREREQ: ENGR g445.
NS&E g447 Nuclear Systems Laboratory 3 credits. Techniques of radiation detection and measurements, flux measurements, neutron activation analysis, approach to criticality, Inhour equation, subcritical experiments. PREREQ: ENGR g445.
NS&E g448 Design, Control and Use of Radiation Systems 3 credits. Generation detection and measurement systems design
for control and use of neutrons and gamma rays in industrial and medical applications. Radiation protection, regulations, environmental
and economic considerations. COREQ: ENGR g445.NS&E g487 Medical Applications in Engineering and Physics 3 credits. Applications of engineering and physics, principles, particularly nuclear science, to medicine. Covers radioisotopes, x-ray imaging, magnetic resonance and ultrasound imaging, radiation protection, codes and standards. PREREQ: MATH g360 AND PHYS 212.
NS&E 584-585 Survey of Nuclear Engineering 3 credits. For BS engineering graduates with no nuclear background. Lecture, laboratory each semester. Nuclear science; reactor physics, kinetics and thermal hydraulics; nuclear fuel cycle. Not counted toward graduation requirements. PREREQ: BS IN ENGINEERING.
NS&E 601 Nuclear Engineering Experiments 3 credits. Experimental verification of theoretical models will be stressed. Kinetic behavior, neuron spatial distribution, perturbation, and other characteristic equations will be investigated. PREREQ: ENGR 432 AND ENGR 433.
NS&E 603 Advanced Thermal Hydraulics 3 credits. Advanced studies of both fluid flow and heat transfer in nuclear reactor cores. Conservation equations; constitutive relations; formulation and solution approaches for complete equation set. PREREQ: ENGR 341, ME g476.
NS&E 604 Dynamic Behavior of Nuclear Systems 3 credits. Kinetic behavior of nuclear reactors including feedback effects of power transients, fuel burn up, coolant perturbations, etc. Mathematical models developed to predict both short and long term behavior. PREREQ: ENGR432.
NS&E 605 Advanced Nuclear Engineering 3 credits. Detailed treatment of current, advanced nuclear power reactor designs. Emphasis on the inherent and engineered safety features and on advantages and disadvantages of each design. PREREQ: NS&E 604 AND NS&E 571.
NS&E 608 Advanced Radiation Transport and Shielding 3 credits. Advanced treatment of radiation transport and shielding concepts; interaction and attenuation of neutrons, charged particles, and electromagnetic radiation. Use of deterministic and Monte Carlo computer codes. PREREQ: NS&E g445, MATH g422.
NS&E 609 Advanced Radiation Detection, Measurements, and Applications 3 credits. Advanced treatment of radiation detectors, measurement techniques, data acquisition, and signal processing. Emphasis on applications in science, industry, and medicine. PREREQ: NS&E g445, NS&E g448, MATH g422.
NS&E 618 Treatment of Low Level Radioactive Waste 3 credits. Design and analysis of processes and facilities for treating low-level radioactive waste. Volume reduction, handling, solidification and decontamination processes will be covered. PREREQ: NS&E 402 OR PERMISSION OF INSTRUCTOR.
NS&E 619 Treatment of High Level Radioactive Waste 3 credits. Design and analysis of processes and facilities for treating high-level radioactive waste. Shielding, criticality, separation and stabilization processes will be covered. PREREQ: NS&E 402 OR PERMISSION OF INSTRUCTOR.
NS&E 620 Radiation Health Physics and Safety 3 credits. Advanced health physics methods applied to nuclear plants. Radiation safety regulations and ALARA concept. Application of shielding codes to achieve compliance. PREREQ: ENGR 371 AND PHYS 532 OR EQUIVALENT.
NS&E 625 Two-Phase Flow 3 credits. Fundamentals of two-phase flow. Traditional models. Derivation and examination of conservation equations. Investigation of two-phase flow regimes. PREREQ: NS&E 603.
NS&E 628 Reliability and Risk Analysis 3 credits. Statistical and probabilistic methods of evaluating process and equipment reliability. Use of FMEA, fault tree techniques and Markov methods. Risk and efficacy assessment. PREREQ: ENGR g478 OR MATH g450.
NS&E 631-632 Advanced Reactor Physics 3 credits. Study of advanced theories used in the calculation of nuclear reactor parameters including such topics as the Boltzman transport equation with energy and space dependence multi-group, multi-region diffusion for reflected systems, perturbation theory, etc. Special emphasis will be given to the application of digital computers in nuclear reactor design problems. PREREQ: ENGR 432 OR EQUIVALENT.
NS&E 636 Boiling and Condensation 3 credits. Study of the thermophysics of vaporization and condensation, including heat transfer equipment applications. Includes interfacial phenomena, phase stability, homogeneous and heterogeneous nucleation, pool boiling, and external condensation. PREREQ: NS&E 625.
NS&E 646 Two-Phase Flow Measurements Laboratory 2 credits. Design, calibration, operation of two-phase density and mass flow measurement systems. Qualitative and quantitative measurements of flow regime characteristic parameters. Single- and two-component flows. Measurement of upstream disturbance effects. PREREQ: M&CE 644.
Computer Science Graduate Courses
C S g487 Topics in Computer Science 3 credits. Selected topics in Computer Science will be chosen depending on the instructor's interests. PREREQ: C S 386 OR PERMISSION OF INSTRUCTOR.
Engineering and Applied Science Doctoral Graduate Courses
E&AS 699 Doctoral Dissertation Variable Credit. Research toward completion of the dissertation for Ph.D. in Engineering and Applied Science. Graded S/U.
|
|
|
![]() |
IDAHO STATE UNIVERSITY
Academic Information Contact: webmaster@isu.edu Revised: Aug 2001 |